Enhancing Predictive Accuracy for Differentiated Thyroid Cancer (DTC) Recurrence Through Advanced Data Mining Techniques


  • Imelda Juliana Br. Sibarani * Mail Bina Nusantara University, Jakarta, Indonesia
  • Katherina Meylda Loy S Bina Nusantara University, Jakarta, Indonesia
  • Suharjito Suharjito Bina Nusantara University, Jakarta, Indonesia
  • (*) Corresponding Author
Keywords: Thyroid Cancer; Cancer Recurrence; Prediction; Orange Software; Ensemble Model; Unsupervised Learning

Abstract

Thyroid cancer is becoming more common, and its 20% recurrence rate of which almost half are discovered more than five years after surgery, highlights how difficult it is to distinguish between a true disease relapse and chronic disease brought on by insufficient initial treatment. This ambiguity highlights the complicated dynamics that drive the mortality rates in patients with thyroid cancer. The purpose of this study is to be refining these predictions to control Differentiated Thyroid Cancer recurrence and minimize the risk of recurrence. The dataset was obtained by monitoring a total of 383 patients with 17 attributes. This study adopted a data mining modelling strategy to evaluate the performance, classification accuracy, and cluster distribution, utilizing the Orange data mining software. The Exploratory Data Analysis was conducted to pinpoint the most significant contributors. Subsequently, a variety of supervised techniques were applied to assess the precision of both single and ensemble models in classification. For cluster determination, we implemented several unsupervised learning techniques, including k-means, hierarchical, and Louvain Clustering. The result shows that ensemble stacking algorithm demonstrated superior performance and classification accuracy, achieving impressive scores of 0.971. The analysis of clustering methods, notably k-means and hierarchical clustering, suggested that the dataset could be segmented into two distinct clusters. The most dominant factors in influencing the recurrence of thyroid cancer with strong correlation revealed 'Response', 'Risk', 'Adenopathy', and 'N'. The refinement of the diagnostic model, through the identification of accurate models and key factors, enhances the prediction of Differentiated Thyroid Cancer recurrence.

Downloads

Download data is not yet available.

References

Abbad Ur Rehman, H., Lin, C. Y., & Mushtaq, Z. (2021). Effective K-Nearest Neighbor Algorithms Performance Analysis of Thyroid Disease. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A, 44(1), 77–87. https://doi.org/10.1080/02533839.2020.1831967

Abbad Ur Rehman, H., Lin, C. Y., Mushtaq, Z., & Su, S. F. (2021). Performance Analysis of Machine Learning Algorithms for Thyroid Disease. Arabian Journal for Science and Engineering, 46(10), 9437–9449. https://doi.org/10.1007/s13369-020-05206-x

Agosto Salgado, S., Kaye, E. R., Sargi, Z., Chung, C. H., & Papaleontiou, M. (2023). Management of Advanced Thyroid Cancer: Overview, Advances, and Opportunities. American Society of Clinical Oncology Educational Book, 43, 1–10. https://doi.org/10.1200/edbk_389708

Alyas, T., Hamid, M., Alissa, K., Faiz, T., Tabassum, N., & Ahmad, A. (2022). Empirical Method for Thyroid Disease Classification Using a Machine Learning Approach. BioMed Research International, 2022. https://doi.org/10.1155/2022/9809932

Brun, M., Sima, C., Hua, J., Lowey, J., Carroll, B., Suh, E., & Dougherty, E. R. (2007). Model-based evaluation of clustering validation measures. Pattern Recognition, 40(3), 807–824. https://doi.org/10.1016/j.patcog.2006.06.026

Chaganti, R., Rustam, F., De La Torre Díez, I., Mazón, J. L. V., Rodríguez, C. L., & Ashraf, I. (2022). Thyroid Disease Prediction Using Selective Features and Machine Learning Techniques. Cancers, 14(16), 1–23. https://doi.org/10.3390/cancers14163914

Chan, S., Karamali, K., Kolodziejczyk, A., Oikonomou, G., Watkinson, J., Paleri, V., Nixon, I., & Kim, D. (2020). Systematic Review of Recurrence Rate after Hemithyroidectomy for Low-Risk Well-Differentiated Thyroid Cancer. European Thyroid Journal, 9(2), 73–84. https://doi.org/10.1159/000504961

Chatchomchuan, W., Thewjitcharoen, Y., Karndumri, K., Porramatikul, S., Krittiyawong, S., Wanothayaroj, E., Vongterapak, S., Butadej, S., Veerasomboonsin, V., Kanchanapitak, A., Rajatanavin, R., & Himathongkam, T. (2021). Recurrence Factors and Characteristic Trends of Papillary Thyroid Cancer over Three Decades. International Journal of Endocrinology, 2021. https://doi.org/10.1155/2021/9989757

Chaubey, G., Bisen, D., Arjaria, S., & Yadav, V. (2021). Thyroid Disease Prediction Using Machine Learning Approaches. National Academy Science Letters, 44(3), 233–238. https://doi.org/10.1007/s40009-020-00979-z

Chen, D., Hu, J., Zhu, M., Tang, N., Yang, Y., & Feng, Y. (2020). Diagnosis of thyroid nodules for ultrasonographic characteristics indicative of malignancy using random forest. BioData Mining, 13(1), 1–21. https://doi.org/10.1186/s13040-020-00223-w

Davies, L., & Welch, H. G. (2014). Current thyroid cancer trends in the United States. JAMA Otolaryngology - Head and Neck Surgery, 140(4), 317–322. https://doi.org/10.1001/jamaoto.2014.1

Ding, Y., Mao, Z., Ruan, J., Su, X., Li, L., Fahey, T. J., Wang, W., & Teng, L. (2019). Nomogram-Based New Recurrence Predicting System in Early-Stage Papillary Thyroid Cancer. International Journal of Endocrinology, 2019. https://doi.org/10.1155/2019/1029092

Fengyun Zhang, Jie Geng, De-Gan Zhang, Jinglong Gui, R. S. (2023). Prediction of cancer recurrence based on compact graphs of whole slide images. Computers in Biology and Medicine, 167. https://doi.org/doi.org/10.1016/j.compbiomed.2023.107663

Haugen, B. R., Alexander, E. K., Bible, K. C., Doherty, G. M., Mandel, S. J., Nikiforov, Y. E., Pacini, F., Randolph, G. W., Sawka, A. M., Schlumberger, M., Schuff, K. G., Sherman, S. I., Sosa, J. A., Steward, D. L., Tuttle, R. M., & Wartofsky, L. (2016). 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid, 26(1), 1–133. https://doi.org/10.1089/thy.2015.0020

Hong, L., Luo, M., Wang, R., Lu, P., Lu, W., & Lu, L. (2018). Big Data in Health Care: Applications and Challenges. Data and Information Management, 2(3), 175–197. https://doi.org/10.2478/dim-2018-0014

Idarraga, A. J., Luong, G., Hsiao, V., & Schneider, D. F. (2021). False Negative Rates in Benign Thyroid Nodule Diagnosis: Machine Learning for Detecting Malignancy. Journal of Surgical Research, 268(268), 562–569. https://doi.org/10.1016/j.jss.2021.06.076

Javaid, M., Haleem, A., Pratap Singh, R., Suman, R., & Rab, S. (2022). Significance of machine learning in healthcare: Features, pillars and applications. International Journal of Intelligent Networks, 3(February), 58–73. https://doi.org/10.1016/j.ijin.2022.05.002

Jha, R., Bhattacharjee, V., & Mustafi, A. (2022). Increasing the Prediction Accuracy for Thyroid Disease: A Step Towards Better Health for Society. Wireless Personal Communications, 122(2), 1921–1938. https://doi.org/10.1007/s11277-021-08974-3

Kayaalp, F., & Erdogmus, P. (2020). Benchmarking the Clustering Performances of Evolutionary Algorithms: A Case Study on Varying Data Size. Irbm, 41(5), 267–275. https://doi.org/10.1016/j.irbm.2020.06.002

Raj, M. G. (2024). Enhancing Thyroid Cancer Diagnostics Through Hybrid Machine Learning and Metabolomics Approaches. International Journal of Advanced Computer Science & Applications, Vol 15, Issue 2, p282. https://doi.org/10.14569/ijacsa.2024.0150230

Ruiz, E. M. L., Niu, T., Zerfaoui, M., Kunnimalaiyaan, M., Friedlander, P. L., Abdel-Mageed, A. B., & Kandil, E. (2020). A novel gene panel for prediction of lymph-node metastasis and recurrence in patients with thyroid cancer. Surgery (United States), 167(1), 73–79. https://doi.org/10.1016/j.surg.2019.06.058

Sapuppo, G., Tavarelli, M., Belfiore, A., Vigneri, R., & Pellegriti, G. (2018). Time to Separate Persistent from Recurrent Differentiated Thyroid Cancer: Different Conditions with Different Outcomes. Journal of Clinical Endocrinology and Metabolism, 104(2), 258–265. https://doi.org/10.1210/jc.2018-01383

Schlumberger, M., & Leboulleux, S. (2021). Current practice in patients with differentiated thyroid cancer. Nature Reviews Endocrinology, 17(3), 176–188. https://doi.org/10.1038/s41574-020-00448-z

Smittenaar, C. R., Petersen, K. A., Stewart, K., & Moitt, N. (2016). Cancer incidence and mortality projections in the UK until 2035. British Journal of Cancer, 115(9), 1147–1155. https://doi.org/10.1038/bjc.2016.304

Wang, H., Zhang, C., Li, Q., Tian, T., Huang, R., Qiu, J., & Tian, R. (2024). Development and validation of prediction models for papillary thyroid cancer structural recurrence using machine learning approaches. BMC Cancer, 24(1), 1–12. https://doi.org/10.1186/s12885-024-12146-4

Wang, J., Yu, F., Shang, Y., Ping, Z., & Liu, L. (2020). Thyroid cancer: incidence and mortality trends in China, 2005–2015. Endocrine, 68(1), 163–173. https://doi.org/10.1007/s12020-020-02207-6

Wang, L., & Ann Alexander, C. (2013). Applications of Automated Identification Technology in EHR/EMR. International Journal of Public Health Science (IJPHS), 2(3), 109–122. https://doi.org/10.11591/ijphs.v2i3.3300


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Enhancing Predictive Accuracy for Differentiated Thyroid Cancer (DTC) Recurrence Through Advanced Data Mining Techniques

Dimensions Badge
Article History
Published: 2024-06-21
Abstract View: 351 times
PDF Download: 177 times
Section
Articles