Perbandingan Algoritma Decision Tree dan Support Vector Machine Dalam Pemilihan Calon Mahasiswa Penerima KIP-K
Abstract
KIP Kuliah is tuition assistance from the government for high school / equivalent graduates who have good academic potential but have economic limitations. There are many things that should be considered by universities before selecting prospective students who receive KIP Lecture so that selection can be done using machine learning and classification algorithms. In this research, two machine learning algorithms will be used including: Decision Tree and Support Vector Machine (SVM). Furthermore, these two algorithms will be tested and compared the final results. Both algorithms have different results. The highest level of accuracy, precision, recall, and F1 score is 100%. This value can be achieved by the Decision Tree algorithm because the dataset used is suitable for it to solve. Therefore, the Decision Tree algorithm is recommended to be used in selecting KIP College student candidates.
Downloads
References
Abdallah, Z. S., Du, L., & Webb, G. I. (2016). Data Preparation (C. Sammut & G. I. Webb (eds.); p. 318–327 BT–Encyclopedia of Machine Learning and Data Mining). Humana Press . https://doi.org/10.1007/978-1-4899-7502-7_62-1
Berry, M. J. ., & Linoff, G. S. (2004). Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management.
Hakkoum, H., Idri, A., Abnane, I., & Fernades-Aleman, J. (2023). Does Categorical Encoding Affect the Interpretability of a Multilayer Perceptron for Breast Cancer Classification? Proceedings Ofthe 12th International Conference on Data Science, Technology and Applications (DATA 2023), Data, 351–358. https://doi.org/10.5220/0012084800003541
Izzudin, Hamzah, Nisrafariza, & Idris. (2020). ANALYSIS OF MULTISPECTRAL IMAGERY FROM UNMANNED AERIAL VEHICLE (UAV) USING OBJECT-BASED IMAGE ANALYSIS FOR DETECTION OF GANODERMA DISEASE IN OIL PALM. Journal of Oil Palm Research, 5(5), 543–546.
Kasih, A. P. (2022). KIP Kuliah 2022 Buka 185.000 Kuota, Kondisi Rumah Mahasiswa Akan Dicek.
Nurhopipah, A., & Hasanah, U. (2020). Dataset Splitting Techniques Comparison For Face Classification on CCTV Images. Indonesia Journal of Computing and Cybernetics Systems, 14, 341–352.
Park, K., Hong, J. S., & Kim, W. (2020). A Methodology Combining Cosine Similarity with Classifier for Text Classification. Applied Artificial Intelligence, 34(5), 396–411. https://doi.org/10.1080/08839514.2020.1723868
Patimah, N. F., Abdurrohman, M., Rinaldi, A. R., & Dikananda, A. R. (2021). Implementasi Algoritma Naive Bayes dam Klasifikasi Penyakit Diabetes. Jurnal Data Science & Informatika, 1, 6–10.
Rasywir, E., Sinaga, R., & Pratama, Y. (2020). Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network ( CNN ). Jurnal Paradigma UBSI, 22(2), 117–123.
Ridzuan, F., & Zainon, W. M. N. (2019). A Review on Data Cleansing Methods for Big Data. Procedia Computer Science, 161, 731–738. https://doi.org/10.1016/j.procs.2019.11.177
Salais-Fierro, T. E., Saucedo-Martinez, J. A., Rodriguez-Aguilar, R., & Vela-Haro, J. M. (2020). Demand prediction using a soft-computing approach: A case study of automotive industry. Applied Sciences (Switzerland), 10(3). https://doi.org/10.3390/app10030829
Sarno, R., Sabilla, S. I., Purbawa, D. P., Khah, M., & Ardani, H. S. (2022). Machine Learning dan Deep Learning-Konsep dan Pemrograman Python. Penerbit Andi.
Siagian, R. Y. (2011). Klasifikasi Parket Kayu Jati Menggunakan Metode Support Vector Machines (SVM). Universitas Gunadarma.
Sueno, H. T. (2020). Multi-class Document Classification using Support Vector Machine (SVM) Based on Improved Naïve Bayes Vectorization Technique. International Journal of Advanced Trends in Computer Science and Engineering, 9(3), 3937–3944. https://doi.org/10.30534/ijatcse/2020/216932020
Tableu. (2022). Guide To Data Cleaning: Definition, Benefits, Components, And How To Clean Your Data.
Tsang, W. K., & Benoit, D. F. (2020). Gaussian processes for daily demand prediction in tourism planning. Journal of Forecasting, 39(3), 551–568. https://doi.org/10.1002/for.2644
Visa, S., Ramsay, B., Ralescu, A., & Knaap, E. V. D. (2011). Confusion Matrix-based Feature Selection. Proceedings of The 22nd Midwest Artificial Intelligence and Cognitive Science.
Wali, M., & Ahmad, L. (2018). Perancangan Access Open Journal System (AOJS) dengan menggunakan Framework Codeigniter dan ReactJs. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 2(1 SE-Articles), 48–56. https://doi.org/10.35870/jtik.v2i1.53
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Algoritma Decision Tree dan Support Vector Machine Dalam Pemilihan Calon Mahasiswa Penerima KIP-K
Pages: 613-619
Copyright (c) 2024 Nayaka Al Syahreal Kanaka, Rudi Heriansyah, Shinta Puspasari

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).