Analisis Ketidakseimbangan Tegangan Baterai dengan Pendekatan Random Forest, K Nearest Neighbors untuk Prediksi Balancing Charger


  • Irwan Novianto * Mail Universitas Nahdlatul Ulama Yogyakarta, Yogyakarta, Indonesia
  • Septian Rico Hernawan Universitas Nahdlatul Ulama Yogyakarta, Yogyakarta, Indonesia
  • (*) Corresponding Author
Keywords: Battery; Balancing charger; Random Forest; K-Nearest Neighbors; Machine Learning; RF; KNN

Abstract

Inter-cell voltage imbalance degrades efficiency, accelerates aging, and increases failure risk in electrochemical energy storage systems. This study models and predicts balancing-charger conditions using two machine-learning algorithms Random Forest (RF) and K-Nearest Neighbors (KNN) across packs of 4, 8, 10, and 15 cells with five dataset scales (1,000; 5,000; 10,000; 15,000; and 20,000 samples). Voltage data were obtained through simulation and laboratory measurements on lithium-ion cells within 3.2–4.2 V, then normalized and split into training and testing sets. Performance was evaluated using accuracy, confusion matrices, and feature-importance analysis. Results show RF achieves 0.98 accuracy for 4-cell packs and remains high at 0.93 for 15-cell packs, whereas KNN attains only 0.94 and 0.37 on the same configurations. RF exhibits predictions concentrated along the confusion-matrix diagonal with well-distributed feature weights, indicating robustness to increasing dimensionality. The contributions are threefold: (1) an evaluation framework for comparing classifiers in multi-cell scenarios; (2) empirical evidence of RF’s scalability for detecting balancing conditions from single-voltage inputs; and (3) practical implications for BMS operation more accurate balancing decisions, prioritization of problematic cells, reduced futile equalization cycles, and potential energy savings together with extended service life. These findings recommend RF as a core algorithm for machine-learning-based balancing chargers, particularly for real-world deployment on power-constrained edge devices.

Downloads

Download data is not yet available.

References

PT PLN (PERSERO), “Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) 2025-2034,” Jakarta, May 2025.

J. Langer, J. Quist, and K. Blok, “Review of Renewable Energy Potentials in Indonesia and Their Contribution to a 100% Renewable Electricity System,” Energies (Basel), vol. 14, no. 21, p. 7033, Oct. 2021, doi: 10.3390/en14217033.

M. Latif, R. Nazir, and H. Reza, “Analisa Proses Charging Akumulator Pada Prototipe Turbin Angin Sumbu Horizontal Di Pantai Purus Padang,” Jurnal Nasional Teknik Elektro, vol. 2, no. 1, pp. 1–8, Apr. 2013, doi: 10.20449/jnte.v2i1.91.

M. R. Faqih, N. A. Windarko, and E. Wahjono, “Sistem Baterai Cell Balancing Pasif Menggunakan Kontrol Logika Fuzzy Tipe Mamdani untuk Baterai Pack Lithium,” J-Innovation, vol. 10, no. 2, pp. 34–43, Dec. 2021, doi: 10.55600/jipa.v10i2.111.

O. Zebua, A. H. Setiawan, N. Soedjarwanto, J. Anggara, and A. Haris, “Rancang Bangun Alat Monitoring Ketidakseimbangan Beban Pada Jaringan Tegangan Menengah,” JURNAL NASIONAL TEKNIK ELEKTRO, vol. 5, no. 3, p. 405, Nov. 2016, doi: 10.25077/jnte.v5n3.325.2016.

R. N. Ahmad, H. Suryoatmojo, and D. C. Riawan, “Rancang Bangun Pengisi Daya Untuk Baterai Lithium-Polymer Dengan Mempertimbangkan Kompensasi Resistansi,” Transmisi: Jurnal Ilmiah Teknik Elektro, vol. 25, no. 2, pp. 48–57, Jun. 2023, doi: 10.14710/transmisi.25.2.48-57.

S. Voronov, E. Frisk, and M. Krysander, “Data-Driven Battery Lifetime Prediction and Confidence Estimation for Heavy-Duty Trucks,” IEEE Trans Reliab, vol. 67, no. 2, pp. 623–639, Jun. 2018, doi: 10.1109/TR.2018.2803798.

H. Yedla, L. R. Koppada, and R. S. Bodala, “Advanced Battery Management: Forecasting Health, State of Charge & Maintenance Needs Using AI & ML Models (LSTM, Gradient Boosting, SVR, Random Forest),” Asian Journal of Research in Computer Science, vol. 17, no. 8, pp. 46–57, Jul. 2024, doi: 10.9734/ajrcos/2024/v17i7489.

T. Jim Hassan et al., “UAS-Guided Analysis of Electric and Magnetic Field Distribution in High-Voltage Transmission Lines (Tx) and Multi-Stage Hybrid Machine Learning Models for Battery Drain Estimation,” IEEE Access, vol. 12, pp. 82289–82317, 2024, doi: 10.1109/ACCESS.2024.3394532.

S. Rout, S. K. Samal, and S. R. Mahapatro, “Estimation of SOC for Li-ion battery-powered three-wheeled electric vehicle using machine learning methods,” Engineering Research Express, vol. 6, no. 4, p. 045308, Dec. 2024, doi: 10.1088/2631-8695/ad8063.

K. S. R. Mawonou, A. Eddahech, D. Dumur, D. Beauvois, and E. Godoy, “State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking,” J Power Sources, vol. 484, p. 229154, Feb. 2021, doi: 10.1016/j.jpowsour.2020.229154.

G. Wang, Z. Lyu, and X. Li, “An Optimized Random Forest Regression Model for Li-Ion Battery Prognostics and Health Management,” Batteries, vol. 9, no. 6, p. 332, Jun. 2023, doi: 10.3390/batteries9060332.

L. Shao, L. Zhao, H. Liu, D. Zhang, J. Li, and C. Li, “Research on the Remaining Useful Life Prediction Method of Energy Storage Battery Based on Multimodel Integration,” ACS Omega, vol. 9, no. 39, pp. 40496–40510, Oct. 2024, doi: 10.1021/acsomega.4c03524.

U. Khan, M. Tariq, and A. I. Sarwat, “Adaptive Remaining Capacity Estimator of Lithium-Ion Battery Using Genetic Algorithm-Tuned Random Forest Regressor Under Dynamic Thermal and Operational Environments,” Energies (Basel), vol. 17, no. 22, p. 5582, Nov. 2024, doi: 10.3390/en17225582.

G. Crocioni, D. Pau, J.-M. Delorme, and G. Gruosso, “Li-Ion Batteries Parameter Estimation With Tiny Neural Networks Embedded on Intelligent IoT Microcontrollers,” IEEE Access, vol. 8, pp. 122135–122146, 2020, doi: 10.1109/ACCESS.2020.3007046.

Dr. M. S. Dr. S. D. Akansh Garg and Mr. G. D. Ms. A. Dr. Abhishek Tripathi, “Machine Learning Based Risk Management of Credit Sales in Small and Mid-Size Business,” Journal of Informatics Education and Research, vol. 4, no. 2, May 2024, doi: 10.52783/jier.v4i2.842.

I. Andık, F. Y. Arslan, and A. Uysal, “Comparison of prediction performance of lithium titanate oxide battery discharge capacity with machine learning methods,” Electrical Engineering, vol. 107, no. 5, pp. 6721–6734, May 2025, doi: 10.1007/s00202-024-02503-8.

C. Chang, Z. Feng, and Z. Liu, “A Study of the Distribution of Forest Density in Inner Mongolia Based on Environmental Factors,” Forests, vol. 13, no. 2, p. 313, Feb. 2022, doi: 10.3390/f13020313.

Z. B. Omariba, L. Zhang, and D. Sun, “Review of Battery Cell Balancing Methodologies for Optimizing Battery Pack Performance in Electric Vehicles,” IEEE Access, vol. 7, pp. 129335–129352, 2019, doi: 10.1109/ACCESS.2019.2940090.

X. Wang, “Stock Price Prediction: A Comparative Study of Random Forest and LSTM Models,” Highlights in Science, Engineering and Technology, vol. 107, pp. 117–123, Aug. 2024, doi: 10.54097/70a8b947.

L. Breiman, “Random Forests,” Mach Learn, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans Inf Theory, vol. 13, no. 1, pp. 21–27, Jan. 1967, doi: 10.1109/TIT.1967.1053964.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Ketidakseimbangan Tegangan Baterai dengan Pendekatan Random Forest, K Nearest Neighbors untuk Prediksi Balancing Charger

Dimensions Badge
Article History
Submitted: 2025-07-27
Published: 2025-08-31
Abstract View: 152 times
PDF Download: 95 times
Section
Articles