Prediksi Cuaca Menggunakan Data Historis dengan Algoritma Regresi Linear untuk Analisis Perubahan Suhu
Abstract
Tokyo, the capital of Japan located on the state of Honshu, is facing with subtropical climate complexity, combining extreme temperature variations reached in hot summer season (>35 degrees) and cold winter season temperatures below 0 degrees. Current research explored the regression linear algorithm potential to predict daily maximum temperature within the context of complex urban weather dynamics. Based on the meteorology dataset collected in total of 639 days including key variables of temperature, humidity, rainfall, and air pressure, study developed weather prediction model. The outcomes demonstrated exceptional performance with Root Mean Squared Error at 0.80 and R-squared of 0.99, showing the near full coverage of model’s ability to capture all possible weather variability patterns. As a result, the research findings not only confirmed the effectiveness of linear regression for urban weather prediction but also open the possibility of similar model integration within more sophisticated weather forecast systems. Data-centered approach made significant contribution to the modern weather prediction technology responsive to urban society requirement.
Downloads
References
Y. Ohashi, T. Ihara, K. Oka, Y. Takane, and Y. Kikegawa, “Machine learning analysis and risk prediction of weather-sensitive mortality related to cardiovascular disease during summer in Tokyo, Japan,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-44181-9.
S. Ogata et al., “Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts,” Nat Commun, vol. 12, no. 1, Dec. 2021, doi: 10.1038/s41467-021-24823-0.
A. Marbun and D. Nofriansyah, “Analisa Data Mining Untuk Mengestimasi Potensi Curah Hujan Dengan Menggunakan Metode Regresi Linear Berganda,” Jurnal CyberTech, vol. 4, no. 2, 2021
M. Abdul, R. Wahid, A. Nugroho, and A. H. Anshor, “Prediksi Penyakit Kanker Paru-Paru Dengan Algoritma Regresi Linier,” Bulletin of Information Technology (BIT), vol. 4, no. 1, pp. 63–74, 2023, doi: 10.47065/bit.v3i1.
A. Luthfiarta, A. Febriyanto, H. Lestiawan, and W. Wicaksono, “Analisa Prakiraan Cuaca dengan Parameter Suhu, Kelembaban, Tekanan Udara, dan Kecepatan Angin Menggunakan Regresi Linear Berganda,” JOINS (Journal of Information System), vol. 5, no. 1, pp. 10–17, May 2020, doi: 10.33633/joins.v5i1.2760.
A. Supriyadi Sunge and A. Turmudi Zy, “Analisis Prediksi Penjualan Dengan Metode Regresi Linear Di Pt. Eagle Industry Indonesia,” Jinteks, Vol 5, No 3, 2023, Available: https://journal.ekkeagle.com/jinteks/vol5/issue3/9910
D. Rizki Septiani, “Pengembangan Model Prediksi Cuaca Menggunakan Teknik Machine Learning,” Jatika, vol. 1, no. 4, pp. 1–16, 2024, doi: 10.33365/jatika.v4i1.2457.
M. Edi, E. Utami, and A. Yaqin, “Prediksi Harga pada Trading Forex Pair USDCHF Menggunakan Regresi Linear,” Jurnal Manajemen Informatika (JAMIKA), vol. 13, no. 2, pp. 109–119, Sep. 2023, doi: 10.34010/jamika.v13i2.9826.
R. Andrianto and F. Irawan, “Implementasi Metode Regresi Linear Berganda Pada Sistem Prediksi Jumlah Tonase Kelapa Sawit di PT. Paluta Inti Sawit,” Jurnal Pendidikan Tambusai, vol. 7–1, pp. 2926–2936, 2023, Accessed: Feb. 23, 2025
J. P. Halawa, A. Hermawan, and . J., “Implementation of Linear Regression Algorithm to Predict Stock Prices Based on Historical Data,” bit-Tech, vol. 5, no. 2, pp. 103–112, Dec. 2022, doi: 10.32877/bt.v5i2.616.
A. Bahtiar, “Prediksi Hasil Panen Padi Tahun 2023 Menggunakan Metode Regresi Linier Di Kabupaten Indramayu,” Jurnal Informatika Terpadu, vol. 9, no. 1, pp. 18–23, 2023, Available: https://journal.nurulfikri.ac.id/index.php/JIT
Y. F. Wijaya and A. Triayudi, “Penerapan Data Mining Pada Prediksi Harga Emas dengan Menggunakan Algoritma Regresi Linear Berganda dan ARIMA,” Journal of Computer System and Informatics (JoSYC), vol. 5, no. 1, pp. 73–81, Nov. 2023, doi: 10.47065/josyc.v5i1.4615.
J. Pebralia, “Analisis Curah Hujan Menggunakan Machine Learning Metode Regresi Linier Berganda Berbasis Python dan Jupyter Notebook,” JIFP (Jurnal Ilmu Fisika dan Pembelajarannya), vol. 6, no. 2, pp. 23–30, 2022, Available: http://jurnal.radenfatah.ac.id/index.php/jifp/
M. R. Alifi, H. Hayati, and C. Fauzi, “Penerapan Algoritma Regresi Linier pada Prediksi Tarif Influencer Media Sosial,” Journal of Information System Research (JOSH), vol. 4, no. 1, pp. 210–218, Oct. 2022, doi: 10.47065/josh.v4i1.2361.
R. Ritonga, Optimalisasi Kinerja Pegawai Pertanian. PT. Literasi Nusantara Abadi Grup, 2024. Available: www.penerbitlitnus.co.id
A. N. Sa’adah, A. S. Sunge, A. T. Zy, “Prediksi Pertumbuhan Penduduk Dengan Model Clustering Metode Regresi Linear,” Jurnal Teknologi Terpadu, Vol 11, No 2, 2023, Available: https://journal.umm.ac.id/index.php/jtt/article/view/596894594
T. Conradt, “Choosing multiple linear regressions for weather-based crop yield prediction with ABSOLUT v1.2 applied to the districts of Germany,” Int J Biometeorol, vol. 66, no. 11, pp. 2287–2300, Nov. 2022, doi: 10.1007/s00484-022-02356-5.
N. Afrilia and F. Frazna Az-Zahra, “Prediksi Hasil Panen Wortel Menggunakan Algoritma Regresi Linear Berganda,” JATI, Vol 8, No 5, 2024, Available: https://ejournal.itn.ac.id/index.php/jati/article/view/10954
T. A. Gahwera, O. Steven Eyobu, M. Isaac, and O. S. Eyobu, “Analysis of Machine Learning Algorithms for Prediction of Short-term Rainfall Amounts Using Uganda’s Lake Victoria Basin Weather Dataset,” IEEE TRANSACTIONS and JOURNALS, vol. vol 4, 2016, pp. 1–20, 2024, doi: 10.1109/ACCESS.2017.DOI.
Z. Hadiansyah, Z. Rozikin, and M. Fatchan, “Implementasi Algoritma K-Nearest Neighbor Dalam Klasifikasi Penyakit Kanker Paru Paru,” Journal of Computer System and Informatics (JoSYC), vol. Vol 6, No. 1, pp. 96–106, Nov. 2024, doi: 10.47065/josyc.v6i1.6195.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Prediksi Cuaca Menggunakan Data Historis dengan Algoritma Regresi Linear untuk Analisis Perubahan Suhu
Pages: 553-562
Copyright (c) 2025 Egi Pratama, Muhammad Fatchan, Ahmad Aguswin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).