Implementasi Algoritma Backpropagation Dalam Memprediksi Jumlah Penduduk Usia Produktif Pada Kota Pematangsiantar
Abstract
The productive age itself is a population in the age group between 15 to 64 years, whether they work, go to school, and take care of the household, in this case individuals who are in the scope of productive age are people who can still work well to produce a product and services. This study uses an Artificial Neural Network (ANN) with the backpropgation method. The backpropagation algorithm is one of the existing methods of neural networks as a prediction, estimation, classification, and pattern recognition algorithm. The research data is secondary data sourced from the Central Statistics Agency (BPS) from 2013 to 2015. The data is divided into 2 parts, namely training and testing data. There are 5 architectural models used in this study. 2-20-1, 2-21-1, 2-22-1, 2-23-1, 2-24-1. Of the 5 architectural models used, the best 1 model is obtained, namely 2-24-1 with an accuracy level of 80%, MSE 0.00085177 and epoch 100. So this model is good for predicting the number of productive age population in the city of Pematangsiantar in the future
Downloads
References
D. Syahfitri, A. P. Windarto, M. Fauzan, and Solikhun, “Peningkatan Nilai Akurasi Prediksi Algortima Backpropogation (Kasus : Jumlah Pengunjung Tamu pada Hotel berbintang di Sumatera Utara),” J. Inf. Syst. Res., vol. 2, no. 1, pp. 90–101, 2020.
I. C. Saragih, D. Hartama, and A. Wanto, “Prediksi Perkembangan Jumlah Pelanggan Listrik Menurut Pelanggan Area Menggunakan Algoritma Backpropagation,” Build. Informatics, Technol. sicience, vol. 2, no. 1, pp. 48–54, 2020.
T. Ujianto, B. Winardi, and Karnoto, “Proyeksi Kebutuhan Energi Listrik APJ Pekalongan Tahun 2014-2018 Menggunakan Jaringan Saraf Tiruan Metode Backpropagation Dengan Software MATLAB R2014A,” TRANSIENT, p. 638, 2015.
R. L. Gema and D. Kartika, “Algoritma Propagasi Balik Dalam Pencarian Pola Training Terbaik Untuk Menentukan Prediksi Produksi Usaha Songket Silungkang Dengan Menggunakan MATLAB,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komput., p. 59, 2018.
Y. D. Lestari, “Jaringan Syaraf Tiruan Untuk Prediksi Penjualan jamur Menggunakan Algoritma Backpropagation,” J. ISD, p. 41, 2017.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Algoritma Backpropagation Dalam Memprediksi Jumlah Penduduk Usia Produktif Pada Kota Pematangsiantar
Pages: 199-209
Copyright (c) 2021 Mhd Ridho Azhar, Sumarno Sumarno, Indra Gunawan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).