Prediksi Nilai Tukar Mata Uang Menggunakan Algoritma Long Short-Term Memory dan Random Forest
Abstract
Currency exchange rate is an exchange between two different currencies, which is a comparison of the value or price between the two currencies and this comparison is often called the exchange rate. Currency exchange rate movements are very complex and influenced by many factors, including economic, political, and social factors. In an effort to understand and predict these movements, many studies have been conducted using various methods of analysis and prediction. however, there is still no consensus on the best method to predict exchange rate movements. This study aims to compare the performance between the Long Short Term-Memory and Random Forest algorithms in predicting the exchange rate of the Rupiah (IDR) against the Singapore Dollar (SGD). By utilizing the historical data of currency exchange rate movements, the main data and the data of import and export values from the two countries as additional variables, After going through a series of stages ranging from data collection, preprocessing, to modeling, the evaluation results show that the Long Short Term-Memory algorithm has a better performance with a Root Mean Square Error (RMSE) of 152.28, Mean Absolute Percentage Error (MAPE) 1.25%, and 98.74% accuracy, while Random Forest has an RMSE of 284.3, a MAPE of 2.07%, and an accuracy of 97.93%. These results show that Long Short Term-Memory is superior in capturing complex exchange rate change patterns, making it a more effective choice in predicting currency exchange rates than Random Forest.
Downloads
References
N. A. Zahwa, R. Tri, T. Panggabean, K. A. Matondang, and R. Indriani, “PASAR VALUTA ASING DAN SISTEM NILAI TUKAR,” 2023, [Available] http://jasmien.cattleyadf.org/index.php/jas/article/view/157.
G. P. B. Are, S. H. Sitorus, J. Prof, H. Hadari, and N. Pontianak, “PREDIKSI NILAI TUKAR MATA UANG RUPIAH TERHADAP DOLAR AMERIKA MENGGUNAKAN METODE HIDDEN MARKOV MODEL,” Coding : Jurnal Komputer dan Aplikasi, vol. 08, no. 01, pp. 44–54, 2020, doi: https://doi.org/10.26418/coding.v8i1.39192.
K. Kristiawan and A. Widjaja, “Perbandingan Algoritma Machine Learning dalam Menilai Sebuah Lokasi Toko Ritel,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 7, no. 1, Apr. 2021, doi: 10.28932/jutisi.v7i1.3182.
N. Nurul Hakim, “Implementasi Machine Learning pada Sistem Prediksi Kejadian dan Lokasi Patah Rel Kereta Api di Indonesia,” Sistem Cerdas, vol. 03, 2020, doi: https://doi.org/10.37396/jsc.v3i1.58.
A. Tholib, N. K. Agusmawati, and F. Khoiriyah, “PREDIKSI HARGA EMAS MENGGUNAKAN METODE LSTM DAN GRU,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 3, Aug. 2023, doi: 10.23960/jitet.v11i3.3250.
G. Budiprasetyo, M. Hani’ah, and D. Z. Aflah, “Prediksi Harga Saham Syariah Menggunakan Algoritma Long Short-Term Memory (LSTM),” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 8, no. 3, pp. 164–172, Jan. 2023, doi: 10.25077/teknosi.v8i3.2022.164-172.
Feby Dita, “Serba Serbi Machine Learning Model Random Forest,” Access Date 20 Sept 2024, DQLab.
T. B. Sianturi, I. Cholissodin, and N. Yudistira, “Penerapan Algoritma Long Short-Term Memory (LSTM) berbasis Multi Fungsi Aktivasi Terbobot dalam Prediksi Harga Ethereum,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 3, pp. 1101–1107, 2023, [Online]. Available: http://j-ptiik.ub.ac.id
A. Satyo and B. Karno, “Analisis Data Time Series Menggunakan LSTM (Long Short Term Memory) dan ARIMA (Autocorrelation Integrated Moving Average) dalam Bahasa Python,” ULTIMA InfoSys, vol. XI, no. 1, 2020.
H. N. Bhandari, B. Rimal, N. R. Pokhrel, R. Rimal, K. R. Dahal, and R. K. C. Khatri, “Predicting stock market index using LSTM,” Machine Learning with Applications, vol. 9, p. 100320, Sep. 2022, doi: 10.1016/j.mlwa.2022.100320.
C. Tsuji, “Exchange Rate Forecasting via a Machine Learning Approach,” iBusiness, vol. 14, no. 03, pp. 119–126, 2022, doi: 10.4236/ib.2022.143009.
R. C. Chen, Y. C. Shiao, C. Dewi, and Q. E. Liu, “Predicting the Japanese Yen to US Dollar Exchange Rate Based on Machine Learning Models,” International Computer Symposium, pp. 141–146, Dec. 2020, doi: 10.1109/ICS51289.2020.00037.
Yahoo Finance, “SGD/IDR Singapore Dollar to Indonesian Rupiah Exchange Rate,” Access Date 20 Sept 2024, Yahoo Finance.
Badan Pusat Statistik, “Ekspor Impor Indonsia,” Access Date 20 Sept 2024, BPS - Statistics Indonesia.
N. Putu, S. Wati, and C. Pramartha, “Penerapan Long Short Term Memory dalam Mengklasifikasi Jenis Ujaran Kebencian pada Tweet Bahasa Indonesia,” 2022.
A. Setiawan, “Korelasi Pearson: Panduan Lengkap dalam Analisis Data Statistika,” 2011, Smartstat.
W. Willy, D. P. Rini, and S. Samsuryadi, “Perbandingan Algoritma Random Forest Classifier, Support Vector Machine dan Logistic Regression Clasifier Pada Masalah High Dimension (Studi Kasus: Klasifikasi Fake News),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 4, p. 1720, Oct. 2021, doi: 10.30865/mib.v5i4.3177.
I. Behravan and S. M. Razavi, “Stock Price Prediction Using Machine Learning and Swarm Intelligence,” Journal of Electrical and Computer Engineering Innovations, vol. 8, no. 1, pp. 31–40, 2020, doi: 10.22061/JECEI.2020.6898.346.
N. Aini, M. Arif, I. T. Agustin, and Z. B. Toyibah, “Implementasi Algoritma Random Forest untuk Klasifikasi Bidang MSIB di Prodi Pendidikan Informatika,” Jurnal Informatika, vol. 11, no. 1, pp. 11–16, Apr. 2024, doi: 10.31294/inf.v11i1.20637.
Suci Amaliah, M. Nusrang, and A. Aswi, “Penerapan Metode Random Forest Untuk Klasifikasi Varian Minuman Kopi di Kedai Kopi Konijiwa Bantaeng,” Journal of Statistics and Its application on Teaching and Research, vol. 4, no. 3, pp. 121–127, Dec. 2022, doi: 10.35580/variansiunm31.
M. Aditya Pratama, M. Munawaroh, W. Joko Pranoto, P. Studi Teknik Informatika, F. Sains dan Teknologi, and U. Muhammadiyah Kalimantan Timur, “Perbandingan Performa Algoritma Linear Regresi dan Random Forest untuk Prediksi Harga Bawang Merah di Kota Samarinda,” Jurnal Ilmu Teknik, vol. 1, no. 2, pp. 172–182, 2024, doi: 10.62017/tektonik.
A. M. Sabarina, H. C. Rustamaji, and H. Himawan, “Prediction Of Drug Sales Using Methods Forecasting Double Exponential Smoothing (Case Study : Hospital Pharmacy of Condong Catur),” Jurnal Informatika dan Teknologi Informasi, vol. 18, no. 1, pp. 106–117, 2021, doi: 10.31515/telematika.v18i1.4586.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Prediksi Nilai Tukar Mata Uang Menggunakan Algoritma Long Short-Term Memory dan Random Forest
Pages: 107-116
Copyright (c) 2024 Imam Hidayat, Lalu A. Syamsul Irfan Akbar, Ahmad SjamSjiar Rachman

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).