Implementasi Algoritma K-Nearest Neighbor dalam Klasifikasi Penyakit Kanker Paru Paru
Abstract
Lung cancer is one type of cancer with the highest death rate in the world. Smoking is the main risk factor that causes 20% of cancer deaths and 70% of lung cancer deaths in the world. However, people who do not smoke can also suffer from lung cancer, especially if they are frequently exposed to air pollution, live in an environment contaminated with dangerous substances, or have a family member who suffers from lung cancer. Early detection in the classification of lung cancer is an important factor in increasing the patient's chances of survival. Therefore, this study aims to classify lung cancer using the K-Nearest Neighbor algorithm. The K-Nearest Neighbor algorithm was chosen because in various studies it has a better level of accuracy compared to other supervised learning algorithms. To overcome data imbalance, the Random oversampling technique is used. Based on tests carried out using the Confusion Matrix, the results of measuring the performance values of Accuracy, Precision, Recall and f1-score using the K-Nearest Neighbor algorithm with Random oversampling technique, it can be concluded that the K-Nearest Neighbor algorithm received an Accuracy value of 0.99, Precision 0.99, Recall 0.99 and f1-score 0.99.
Downloads
References
dr. Vincent Lim and dr. Salvirah, “5 Jenis Penyakit Penyebab Kematian Tertinggi di Indonesia,” siloamhospitals. Accessed: Mar. 18, 2024. [Online]. Available: https://www.siloamhospitals.com/en/informasi-siloam/artikel/waspada-5-jenis-penyakit-penyebab-kematian-tertinggi-di-indonesia
Pittara, “Kanker Paru paru,” alodokter. Accessed: Mar. 18, 2024. [Online]. Available: https://www.alodokter.com/kanker-paru-paru
Rizaty and Monavia Ayu, “Data Persentase Perokok di Indonesia (2015-2023),” dataindonesia. Accessed: Mar. 18, 2024. [Online]. Available: https://dataindonesia.id/kesehatan/detail/data-persentase-perokok-di-indonesia-20152023
J. Homepage et al., “Implementasi Algoritma Decision Tree dan Support Vector Machine untuk Klasifikasi Penyakit Kanker Paru,” vol. 3, pp. 15–19, 2023.
A. Desiani et al., “Perbandingan Klasifikasi Penyakit Kanker Paru-Paru menggunakan Support Vector Machine dan K-Nearest Neighbor,” Jurnal PROCESSOR, vol. 18, no. 1, Apr. 2023, doi: 10.33998/processor.2023.18.1.700.
T. Abdi Mangun, O. Nurdiawan, and A. Irma Purnamasari, “LUNG CANCER ANALYSIS USING K-NEARST NEIGHBOR ALGORITHM,” 2023
W. Ramdhani, D. Bona, R. B. Musyaffa, and C. Rozikin, “Klasifikasi Penyakit Kangker Payudara Menggunakan Algoritma K-Nearest Neighbor,” Jurnal Ilmiah Wahana Pendidikan, 2022, pp. 445–452, doi: 10.5281/zenodo.6968420.
A. Amalia et al., “PREDIKSI KUALITAS UDARA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR.”, 2022
A. Pratama Agustin and A. Charis Fauzan, “Implementation Of K-Nearest Neighbor With Minkowski Distance For Early Detection Of Covid-19 In CT-Scan Images Of The Lungs Abstrak,” 2022. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2020arXiv200313865Y/abstract.
A. Desiani et al., “Perbandingan Klasifikasi Penyakit Kanker Paru-Paru menggunakan Support Vector Machine dan K-Nearest Neighbor,” Jurnal PROCESSOR, vol. 18, no. 1, Apr. 2023, doi: 10.33998/processor.2023.18.1.700.
J. Khatib Sulaiman, S. Tegar Kusuma, and T. Bayu Sasongko, “Optimasi K-Nearest Neighbor dengan Grid Search CV pada Prediksi Kanker Paru-Paru,” Indonesian Journal of Computer Science Attribution, vol. 12, no. 4, p. 2162, 2023
M. Rahmadiah and P. Suparman, “PENERAPAN METODE K-NEAREST NEIGHBOUR UNTUK SISTEM PENENTUAN PEMINJAMAN MODAL NASABAH BANK SYARIAH INDONESIA CABANG CIKARANG BERBASIS WEBSITE,” Jurnal informasi dan Komputer, vol. 10, no. 2, 2022.
B. B. Tangkere, “Analisis Performa Logistic Regression dan Support Vector Classification untuk Klasifikasi Email Phising,” Jurnal Ekonomi Manajemen Sistem Informasi (JEMSI), vol. Vol. 5, pp. 442–450, 2024, doi: 10.38035/jemsi.v5i4.
S. Diantika, “PENERAPAN TEKNIK RANDOM OVERSAMPLING UNTUK MENGATASI IMBALANCE CLASS DALAM KLASIFIKASI WEBSITE PHISHING MENGGUNAKAN ALGORITMA LIGHTGBM,” 2023.
Kabar Harian, “Pengertian Dataset dan Jenis-jenisnya,” Kumparan. Accessed: Mar. 19, 2024. [Online]. Available: https://kumparan.com/kabar-harian/pengertian-dataset-dan-jenis-jenisnya-1wtM6xNlkpQ/full
Suripto, Rr Nurul Rahmanita, and Ajeng Sekar Kirana, “Teknik pre-processing dan classification dalam data science,” binus. Accessed: Mar. 19, 2024. [Online]. Available: https://mie.binus.ac.id/2022/08/26/teknik-pre-processing-dan-classification-dalam-data-science/
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Algoritma K-Nearest Neighbor dalam Klasifikasi Penyakit Kanker Paru Paru
Pages: 96-106
Copyright (c) 2024 Zikri Hadiansyah, Zaenur Rozikin, Muhamad Fatchan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).