Implementasi Algoritma K-Nearest Neighbor dalam Klasifikasi Penyakit Kanker Paru Paru


  • Zikri Hadiansyah * Mail Universitas Pelita Bangsa, Bekasi, Indonesia
  • Zaenur Rozikin Universitas Pelita Bangsa, Bekasi, Indonesia
  • Muhamad Fatchan Universitas Pelita Bangsa, Bekasi, Indonesia
  • (*) Corresponding Author
Keywords: Lung Cancer; Smoking; K-Nearest Neighbors; Random Oversampling; Confusion Matrix

Abstract

Lung cancer is one type of cancer with the highest death rate in the world. Smoking is the main risk factor that causes 20% of cancer deaths and 70% of lung cancer deaths in the world. However, people who do not smoke can also suffer from lung cancer, especially if they are frequently exposed to air pollution, live in an environment contaminated with dangerous substances, or have a family member who suffers from lung cancer. Early detection in the classification of lung cancer is an important factor in increasing the patient's chances of survival. Therefore, this study aims to classify lung cancer using the K-Nearest Neighbor algorithm. The K-Nearest Neighbor algorithm was chosen because in various studies it has a better level of accuracy compared to other supervised learning algorithms. To overcome data imbalance, the Random oversampling technique is used. Based on tests carried out using the Confusion Matrix, the results of measuring the performance values ​​of Accuracy, Precision, Recall and f1-score using the K-Nearest Neighbor algorithm with Random oversampling technique, it can be concluded that the K-Nearest Neighbor algorithm received an Accuracy value of 0.99, Precision 0.99, Recall 0.99 and f1-score 0.99.

Downloads

Download data is not yet available.

References

dr. Vincent Lim and dr. Salvirah, “5 Jenis Penyakit Penyebab Kematian Tertinggi di Indonesia,” siloamhospitals. Accessed: Mar. 18, 2024. [Online]. Available: https://www.siloamhospitals.com/en/informasi-siloam/artikel/waspada-5-jenis-penyakit-penyebab-kematian-tertinggi-di-indonesia

Pittara, “Kanker Paru paru,” alodokter. Accessed: Mar. 18, 2024. [Online]. Available: https://www.alodokter.com/kanker-paru-paru

Rizaty and Monavia Ayu, “Data Persentase Perokok di Indonesia (2015-2023),” dataindonesia. Accessed: Mar. 18, 2024. [Online]. Available: https://dataindonesia.id/kesehatan/detail/data-persentase-perokok-di-indonesia-20152023

J. Homepage et al., “Implementasi Algoritma Decision Tree dan Support Vector Machine untuk Klasifikasi Penyakit Kanker Paru,” vol. 3, pp. 15–19, 2023.

A. Desiani et al., “Perbandingan Klasifikasi Penyakit Kanker Paru-Paru menggunakan Support Vector Machine dan K-Nearest Neighbor,” Jurnal PROCESSOR, vol. 18, no. 1, Apr. 2023, doi: 10.33998/processor.2023.18.1.700.

T. Abdi Mangun, O. Nurdiawan, and A. Irma Purnamasari, “LUNG CANCER ANALYSIS USING K-NEARST NEIGHBOR ALGORITHM,” 2023

W. Ramdhani, D. Bona, R. B. Musyaffa, and C. Rozikin, “Klasifikasi Penyakit Kangker Payudara Menggunakan Algoritma K-Nearest Neighbor,” Jurnal Ilmiah Wahana Pendidikan, 2022, pp. 445–452, doi: 10.5281/zenodo.6968420.

A. Amalia et al., “PREDIKSI KUALITAS UDARA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR.”, 2022

A. Pratama Agustin and A. Charis Fauzan, “Implementation Of K-Nearest Neighbor With Minkowski Distance For Early Detection Of Covid-19 In CT-Scan Images Of The Lungs Abstrak,” 2022. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2020arXiv200313865Y/abstract.

A. Desiani et al., “Perbandingan Klasifikasi Penyakit Kanker Paru-Paru menggunakan Support Vector Machine dan K-Nearest Neighbor,” Jurnal PROCESSOR, vol. 18, no. 1, Apr. 2023, doi: 10.33998/processor.2023.18.1.700.

J. Khatib Sulaiman, S. Tegar Kusuma, and T. Bayu Sasongko, “Optimasi K-Nearest Neighbor dengan Grid Search CV pada Prediksi Kanker Paru-Paru,” Indonesian Journal of Computer Science Attribution, vol. 12, no. 4, p. 2162, 2023

M. Rahmadiah and P. Suparman, “PENERAPAN METODE K-NEAREST NEIGHBOUR UNTUK SISTEM PENENTUAN PEMINJAMAN MODAL NASABAH BANK SYARIAH INDONESIA CABANG CIKARANG BERBASIS WEBSITE,” Jurnal informasi dan Komputer, vol. 10, no. 2, 2022.

B. B. Tangkere, “Analisis Performa Logistic Regression dan Support Vector Classification untuk Klasifikasi Email Phising,” Jurnal Ekonomi Manajemen Sistem Informasi (JEMSI), vol. Vol. 5, pp. 442–450, 2024, doi: 10.38035/jemsi.v5i4.

S. Diantika, “PENERAPAN TEKNIK RANDOM OVERSAMPLING UNTUK MENGATASI IMBALANCE CLASS DALAM KLASIFIKASI WEBSITE PHISHING MENGGUNAKAN ALGORITMA LIGHTGBM,” 2023.

Kabar Harian, “Pengertian Dataset dan Jenis-jenisnya,” Kumparan. Accessed: Mar. 19, 2024. [Online]. Available: https://kumparan.com/kabar-harian/pengertian-dataset-dan-jenis-jenisnya-1wtM6xNlkpQ/full

Suripto, Rr Nurul Rahmanita, and Ajeng Sekar Kirana, “Teknik pre-processing dan classification dalam data science,” binus. Accessed: Mar. 19, 2024. [Online]. Available: https://mie.binus.ac.id/2022/08/26/teknik-pre-processing-dan-classification-dalam-data-science/


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Algoritma K-Nearest Neighbor dalam Klasifikasi Penyakit Kanker Paru Paru

Dimensions Badge
Article History
Submitted: 2024-11-04
Published: 2024-11-15
Abstract View: 112 times
PDF Download: 66 times
Section
Articles