Analisis Sentimen Terhadap Review Google Maps Jogja City Mall Menggunakan Algoritma Support Vector Machine
Abstract
Sentiment analysis works with calculating the total of reviews based on given labels. Reviews that had specific labels would be classified with other reviews that had same labels. This study used Support Vector Machine (SVM) method for analysing of reviews of Google Maps users who had visited Jogja City Mall in Sleman, Special Region of Yogyakarta. In previous studies, SVM was proved several times superior in accuracy score and the accuracy of sentiment classification. SVM model for sentiment analysis in this study was successfully created with accuracy score was 84% and 85% in K-Folds testing. With the total of testing data was 20% out of 1694 data, the total amount of positive label was so much more than the total amount of negatif label. This means the rate of 4.6 stars for Jogja City Mall is relevant with the reviews that were given. The analysis of imbalance review data and the correlation between the stars rating and sentiment that were extracted may contribute to a deeper understanding of consumer behavior in the mall, providing practical implications for mall management in improving customer experience.
Downloads
References
A. Erfina dan N. R. Wardani, “ANALISIS SENTIMEN PERGURUAN TINGGI TERMEWAH DI INDONESIA MENURUT ULASAN GOOGLE MAPS MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM),” Jurnal Manajemen Informatika & Sistem Informasi (MISI), vol. 5, hlm. 77–85, Jan 2022.
D. S. Amelia, “TEKS DAN ANALISIS SENTIMEN PADA CHAT GRUP WHATSAPP MENGGUNAKAN LONG SHORT TERM MEMORY (LSTM),” Jurnal Teknologi Terkini (JTT), vol. 3, hlm. 1–23, Jan 2023.
J. Ipmawati, S. Saifulloh, dan K. Kusnawi, “Analisis Sentimen Tempat Wisata Berdasarkan Ulasan pada Google Maps Menggunakan Algoritma Support Vector Machine,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, hlm. 247–256, Jan 2024, doi: 10.57152/malcom.v4i1.1066.
A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, dan W. Gata, “ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI,” Jurnal Teknoinfo, vol. 14, no. 2, hlm. 115, Jul 2020, doi: 10.33365/jti.v14i2.679.
S. F. Pane dan J. Ramdan, “Pemodelan Machine Learning : Analisis Sentimen Masyarakat Terhadap Kebijakan PPKM Menggunakan Data Twitter,” Jurnal Sistem Cerdas, vol. 5, no. 1, hlm. 12–20, Mei 2022, doi: 10.37396/jsc.v5i1.191.
E. Suryati, S. Styawati, dan A. A. Aldino, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding dan Algoritma Support Vector Machine (SVM),” JURNAL TEKNOLOGI DAN SISTEM INFORMASI, vol. 4, hlm. 96–106, Mar 2023.
W. Khofifah, D. N. Rahayu, dan A. M. Yusuf, “Analisis Sentimen Menggunakan Naive Bayes Untuk Melihat Review Masyarakat Terhadap Tempat Wisata Pantai Di Kabupaten Karawang Pada Ulasan Google Maps,” Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol. 16, no. 4, hlm. 28–38, Jan 2022, doi: 10.35969/interkom.v16i4.192.
D. Alita dan A. R. Isnain, “Pendeteksian Sarkasme pada Proses Analisis Sentimen Menggunakan Random Forest Classifier,” jurnal komputasi, vol. 8, no. 2, Okt 2020, doi: 10.23960/komputasi.v8i2.2615.
Y. A. Singgalen, “Analisis Sentimen Wisatawan terhadap Taman Nasional Bunaken dan Top 10 Hotel Rekomendasi Tripadvisor Menggunakan Algoritma SVM dan DT berbasis CRISP-DM,” Journal of Computer System and Informatics (JoSYC), vol. 4, no. 2, hlm. 367–379, Feb 2023, doi: 10.47065/josyc.v4i2.3092.
A. P. Nardilasari, A. L. Hananto, S. S. Hilabi, Tukino, dan B. Priyatna, “Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM Pada Media Sosial Twitter,” Journal of Information Technology, vol. 8, hlm. 11–18, 2023.
R. D. R. Hendrartono, I. M. Hendrati, dan W. Wardaya, “Implementasi Web Crawling Pada Website BPS Jawa Timur Pada Data Inflasi Di Jawa Timur,” UMAT Jurnal Pengbadian Al-Shobar Untuk Masyaraka, vol. 1, hlm. 6–13, 2024.
J. Supriyanto, D. Alita, dan A. R. Isnain, “Penerapan Algoritma K-Nearest Neighbor (K-NN) Untuk Analisis Sentimen Publik Terhadap Pembelajaran Daring,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 4, no. 1, hlm. 74–80, Mar 2023, doi: 10.33365/jatika.v4i1.2468.
E. Yuniar, D. S. Utsalinah, dan D. Wahyuningsih, “Implementasi Scrapping Data Untuk Sentiment Analysis Pengguna Dompet Digital dengan Menggunakan Algoritma Machine Learning,” Jurnal Janitra Informatika dan Sistem Informasi, vol. 2, no. 1, hlm. 35–42, Apr 2022, doi: 10.25008/janitra.v2i1.145.
I. M. Karo Karo, J. A. Karo Karo, Y. Yunianto, H. Hariyanto, M. Falah, dan M. Ginting, “Analisis Sentimen Ulasan Aplikasi Info BMKG di Google Play Menggunakan TF-IDF dan Support Vector Machine,” Journal of Information System Research (JOSH), vol. 4, no. 4, hlm. 1423–1430, Jul 2023, doi: 10.47065/josh.v4i4.3943.
Annisa Rahmaniar Dwi Pratiwi dan Erwin Budi Setiawan, “Implementation of Rumor Detection on Twitter Using the SVM Classification Method,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 5, hlm. 782–789, Okt 2020, doi: 10.29207/resti.v4i5.2031.
P. Arsi dan R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 1, hlm. 147, Feb 2021, doi: 10.25126/jtiik.0813944.
J. W. Iskandar dan Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 6, hlm. 1120–1126, Des 2021, doi: 10.29207/resti.v5i6.3588.
W. Wijiyanto, A. I. Pradana, S. Sopingi, dan V. Atina, “Teknik K-Fold Cross Validation untuk Mengevaluasi Kinerja Mahasiswa,” Jurnal Algoritma, vol. 21, no. 1, Mei 2024, doi: 10.33364/algoritma/v.21-1.1618.
H. Rhomadhona dan J. Permadi, “Klasifikasi Berita Kriminal Menggunakan Naïve Bayes Classifier (NBC) dengan Pengujian K-Fold Cross Validation,” Jurnal Sains dan Informatika, vol. 5, no. 2, hlm. 108–117, Des 2019, doi: 10.34128/jsi.v5i2.177.
R. Tuntun, K. Kusrini, dan K. Kusnawi, “Analisis Perbandingan Kinerja Algoritma Klasifikasi dengan Menggunakan Metode K-Fold Cross Validation,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 4, hlm. 2111, Okt 2022, doi: 10.30865/mib.v6i4.4681.
S. N. Chotimah dan A. R. Rozzaqi, “KLASIFIKASI DIAGNOSIS PENYAKIT GINJAL KRONIS DENGAN MENERAPKAN KONSEP ALGORITMA NAÏVE BAYES,” JIPETIK:Jurnal Ilmiah Penelitian Teknologi Informasi & Komputer, vol. 4, no. 1, hlm. 8–15, Jul 2023, doi: 10.26877/jipetik.v4i1.16174.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Review Google Maps Jogja City Mall Menggunakan Algoritma Support Vector Machine
Pages: 25-35
Copyright (c) 2024 Putri Marceliana Aryanto, Rodhiyah Mardhiyyah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).