Algoritma Bayesian Regulation untuk Prediksi Kemiskinan Sebagai Evaluasi Awal Mendukung Kebijakan Ekonomi Hijau


  • Fahmi Firzada * Mail STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Surya Darma STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • (*) Corresponding Author
Keywords: Machine Learning; Prediction; Poverty; Bayesian Regulation; Green Economy

Abstract

This study aims to utilize the Bayesian Regulation algorithm to predict poverty in Simalungun, Pematangsiantar, Asahan, Batu Bara, and Tebing Tinggi, as an initial step to evaluate the Green Economy policy. Poverty remains a serious issue, particularly in Pematangsiantar and Simalungun, where social inequality and limited access to basic services are prevalent. High poverty rates and limited resources present significant challenges to improving community welfare. The Green Economy policy could be a potential solution to reduce the negative environmental impact of development and enhance community well-being. This research uses secondary time-series poverty data from 2012 to 2023, obtained from the Central Bureau of Statistics of North Sumatra, based on the basic needs approach. The applied Machine Learning algorithm is Bayesian Regulation, used to predict poverty levels in these areas based on five architectural models (10-5-1, 10-10-1, 10-15-1, 10-20-1, and 10-25-1). The 10-25-1 model was selected as the best model due to its smallest MSE (error), 0.00218055780, compared to the other four models. This study aims to provide insights into the development of poverty in these regions and offer an initial evaluation of the effectiveness of the Green Economy policy. It is also expected to propose more effective policy recommendations for reducing poverty and supporting environmental sustainability, particularly in Pematangsiantar and Simalungun.

Downloads

Download data is not yet available.

References

F. Faharuddin dan D. Endrawati, “Determinants of working poverty in Indonesia,” Journal of Economics and Development, vol. 24, no. 3, hal. 230–246, 2022, doi: 10.1108/jed-09-2021-0151.

M. E. Siburian, “The link between fiscal decentralization and poverty – Evidence from Indonesia,” Journal of Asian Economics, vol. 81, no. May 2021, hal. 101493, 2022, doi: 10.1016/j.asieco.2022.101493.

R. Purwono, W. W. Wardana, T. Haryanto, dan M. Khoerul Mubin, “Poverty dynamics in Indonesia: empirical evidence from three main approaches,” World Development Perspectives, vol. 23, hal. 100346, 2021, doi: 10.1016/j.wdp.2021.100346.

A. C. Putria, T. S. Prakoso, dan M. Ohyver, “Modeling the effect of poverty rate, GDRP, and minimum wage, on mean years of schooling in Gorontalo province with panel data regression,” Procedia Computer Science, vol. 216, no. 1, hal. 510–516, 2023, doi: 10.1016/j.procs.2022.12.163.

S. Luckyardi, R. Hurriyati, D. Disman, dan P. D. Dirgantari, “Significances of Marketing Education in Reducing Poverty in Indonesia: Special Review on Quality of Life,” Journal of Eastern European and Central Asian Research, vol. 9, no. 1, hal. 101–111, 2022, doi: 10.15549/jeecar.v9i1.867.

T. K. Siu, “Bayesian nonlinear expectation for time series modelling and its application to Bitcoin,” Empirical Economics, vol. 64, no. 1, hal. 505–537, 2023, doi: 10.1007/s00181-022-02255-z.

M. Kiani Shahvandi dan B. Soja, “Inclusion of data uncertainty in machine learning and its application in geodetic data science, with case studies for the prediction of Earth orientation parameters and GNSS station coordinate time series,” Advances in Space Research, vol. 70, no. 3, hal. 563–575, 2022, doi: 10.1016/j.asr.2022.05.042.

R. Sujatha, J. M. Chatterjee, I. Priyadarshini, A. E. Hassanien, A. A. A. Mousa, dan S. M. Alghamdi, “Self-organizing Maps and Bayesian Regularized Neural Network for Analyzing Gasoline and Diesel Price Drifts,” International Journal of Computational Intelligence Systems, vol. 15, no. 1, hal. 1–16, 2022, doi: 10.1007/s44196-021-00060-7.

J. Cerri, L. Carnevali, A. Monaco, P. Genovesi, dan S. Bertolino, “Blacklists do not necessarily make people curious about invasive alien species. A case study with Bayesian structural time series and Wikipedia searches about invasive mammals in Italy,” NeoBiota, vol. 71, hal. 113–128, 2022, doi: 10.3897/NEOBIOTA.71.69422.

J. Han dan J. N. Ng’ombe, “The relation between wheat, soybean, and hemp acreage: a Bayesian time series analysis,” Agricultural and Food Economics, vol. 11, no. 1, hal. 1–12, 2023, doi: 10.1186/s40100-023-00242-1.

X. Hao, Z. Zhang, Q. Xu, G. Huang, dan K. Wang, “Prediction of f-CaO content in cement clinker: A novel prediction method based on LightGBM and Bayesian optimization,” Chemometrics and Intelligent Laboratory Systems, vol. 220, no. 1, hal. 104461, 2022, doi: 10.1016/j.chemolab.2021.104461.

Y. Wang, M. Perry, D. Whitlock, dan J. W. Sutherland, “Detecting anomalies in time series data from a manufacturing system using recurrent neural networks,” Journal of Manufacturing Systems, vol. 62, no. 1, hal. 823–834, 2022, doi: 10.1016/j.jmsy.2020.12.007.

H. Abbasimehr, R. Paki, dan A. Bahrini, “A novel approach based on combining deep learning models with statistical methods for COVID-19 time series forecasting,” Neural Computing and Applications, vol. 34, no. 4, hal. 3135–3149, 2022, doi: 10.1007/s00521-021-06548-9.

D. M. Ahmed, M. M. Hassan, dan R. J. Mstafa, “A Review on Deep Sequential Models for Forecasting Time Series Data,” Applied Computational Intelligence and Soft Computing, vol. 2022, no. Article ID 6596397, hal. 1–19, 2022, doi: 10.1155/2022/6596397.

I. Ahmed, R. King, S. Akter, R. Akter, dan V. R. Aggarwal, “Determinants of antibiotic self-medication: A systematic review and meta-analysis,” Research in Social and Administrative Pharmacy, vol. 19, no. 7, hal. 1007–1017, 2023, doi: 10.1016/j.sapharm.2023.03.009.

S. Nandy, E. Fortunato, dan R. Martins, “Green economy and waste management: An inevitable plan for materials science,” Progress in Natural Science: Materials International, vol. 32, no. 1, hal. 1–9, 2022, doi: 10.1016/j.pnsc.2022.01.001.

X. Hao, Y. Li, S. Ren, H. Wu, dan Y. Hao, “The role of digitalization on green economic growth: Does industrial structure optimization and green innovation matter?,” Journal of Environmental Management, vol. 325, no. 1, hal. 116504, 2023, doi: 10.1016/j.jenvman.2022.116504.

J. Xu, S. She, P. Gao, dan Y. Sun, “Role of green finance in resource efficiency and green economic growth,” Resources Policy, vol. 81, no. 1, hal. 103349, 2023, doi: 10.1016/j.resourpol.2023.103349.

Z. Li, Y. Wu, E. Rasoulinezhad, Y. Sheng, dan C. Bi, “Green economic recovery in central Asia by utilizing natural resources,” Resources Policy, vol. 83, no. April, hal. 103621, 2023, doi: 10.1016/j.resourpol.2023.103621.

X. Ma, M. Xie, dan J. A. K. Suykens, “A novel neural grey system model with Bayesian regularization and its applications,” Neurocomputing, vol. 456, no. 1, hal. 61–75, 2021, doi: 10.1016/j.neucom.2021.05.048.

A. Fathabadi, S. M. Seyedian, dan A. Malekian, “Comparison of Bayesian, k-Nearest Neighbor and Gaussian process regression methods for quantifying uncertainty of suspended sediment concentration prediction,” Science of the Total Environment, vol. 818, no. 1, hal. 151760, 2022, doi: 10.1016/j.scitotenv.2021.151760.

N. Fiorentini, D. Pellegrini, dan M. Losa, “Overfitting Prevention in Accident Prediction Models: Bayesian Regularization of Artificial Neural Networks,” Transportation Research Record, vol. 2677, no. 2, hal. 1455–1470, 2023, doi: 10.1177/03611981221111367.

D. Kaplan, “On the Quantification of Model Uncertainty: A Bayesian Perspective,” Psychometrika, vol. 86, no. 1, hal. 215–238, 2021, doi: 10.1007/s11336-021-09754-5.

M. Breuer dan H. H. Schütt, “Accounting for uncertainty: an application of Bayesian methods to accruals models,” Review of Accounting Studies, vol. 28, no. 2, hal. 726–768, 2023, doi: 10.1007/s11142-021-09654-0.

W. Van Hove, F. Dalla Longa, dan B. Van der Zwaan, “Identifying predictors for energy poverty in Europe using machine learning,” Energy and Buildings, vol. 264, hal. 112064, 2022, doi: 10.1016/j.enbuild.2022.112064.

K. Abbas dkk., “Measurements and determinants of extreme multidimensional energy poverty using machine learning,” Energy, vol. 251, no. tt1, hal. 123977, 2022, doi: 10.1016/j.energy.2022.123977.

H. Najera, “Misclassification Error, Binary Regression Bias, and Reliability in Multidimensional Poverty Measurement: An Estimation Approach Based on Bayesian Modelling,” Measurement: Interdisciplinary Research and Perspectives, vol. 21, no. 2, hal. 63–81, 2023, doi: 10.1080/15366367.2022.2026104.

R. Purroy Vasquez, A. A. Aguilar Lasserre, R. Meza Palacios, dan G. Fernández Lambert, “Artificial neural network (ANN) in forecasting of poverty line and economic-energetic efficiencies into the maize-based agroecosystems,” Archives of Agronomy and Soil Science, vol. 70, no. 1, hal. 1–17, 2024, doi: 10.1080/03650340.2023.2287751.

D. R. Wijaya, R. I. F. Ibadurrohman, E. Hernawati, dan W. Wikusna, “Poverty prediction using E-commerce dataset and filter-based feature selection approach,” Scientific Reports, vol. 14, no. 1, hal. 1–13, 2024, doi: 10.1038/s41598-024-52752-7.

I. S. Purba dkk., “Accuracy Level of Backpropagation Algorithm to Predict Livestock Population of Simalungun Regency in Indonesia,” in Journal of Physics: Conference Series, 2019, hal. 012014. doi: 10.1088/1742-6596/1255/1/012014.

A. Wanto dan J. T. Hardinata, “Estimations of Indonesian poor people as poverty reduction efforts facing industrial revolution 4.0,” IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, hal. 012114, 2020, doi: 10.1088/1757-899X/725/1/012114.

A. Wanto, S. Defit, dan A. P. Windarto, “Algoritma Fungsi Perlatihan pada Machine Learning berbasis ANN untuk Peramalan Fenomena Bencana,” RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, hal. 254–264, 2021, doi: 10.29207/resti.v5i2.3031.

I. Zuhrufillah, F. Anggraini, dan R. Dewantara, “Peramalan Jumlah Kasus Baru HIV Menurut Provinsi Menggunakan Machine Learning dengan Teknik Levenberg-Marquardt,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 4, hal. 212–221, 2022, doi: 10.47065/josyc.v3i4.2172.

A. Anas Manurung, I. Satria, dan A. Wanto, “Prediksi Perkembangan Produksi Tanaman Sayuran Dalam Upaya Pemenuhan Gizi Masyarakat dengan Algoritma Resilient,” Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK), vol. 8, no. 2, hal. 802–815, 2023, [Daring]. Tersedia pada: https://tunasbangsa.ac.id/ejurnal/index.php/jurasik

Safruddin, E. Efendi, R. M. Ch, dan A. Wanto, “Pemanfaatan Algoritma BFGS Quasi-Newton untuk Melihat Potensi Perkembangan Luas Tanaman Kopi di Pulau Sumatera,” Jurnal Media Informatika Budidarma, vol. 7, no. 1, hal. 473–483, 2023, doi: 10.30865/mib.v7i1.5524.

S. Aisyah, Z. Zulkifli, dan P. A. Cakranegara, “Penerapan Algoritma Bayesian Regulation untuk Estimasi Posisi Cadangan Devisa Indonesia,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 4, hal. 205 − 21 1, 2022, doi: 10.47065/josyc.v3i4.2170.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Algoritma Bayesian Regulation untuk Prediksi Kemiskinan Sebagai Evaluasi Awal Mendukung Kebijakan Ekonomi Hijau

Dimensions Badge
Article History
Submitted: 2024-10-02
Published: 2024-11-30
Abstract View: 19 times
PDF Download: 16 times
Section
Articles