Analisis Algoritma JST untuk Prediksi Perkembangan PDRB Menurut Lapangan Usaha Atas Dasar Harga Berlaku
Abstract
Gross Regional Domestic Product (GRDP) data plays a vital role as a reference in regional development planning. However, the main challenge faced is the inaccuracy of GRDP growth predictions due to complex and fluctuating economic dynamics, especially in areas such as Simalungun Regency. Therefore, this study aims to analyze the development of Gross Regional Domestic Product (GRDP) by business field based on current prices in Simalungun Regency using three Artificial Neural Network (ANN) algorithms, namely Backpropagation, Bayesian Regulation, and Levenberg-Marquardt. The research data is GRDP times-series data for 2015-2023 obtained from the Central Statistics Agency of Simalungun Regency. The analysis used five models of the same architecture, namely 7-5-1, 7-10-1, and 7-15-1, with a target error of 0.01 and a maximum epoch of 1000 iterations. The results of the study indicate that the Levenberg-Marquardt algorithm with the 7-10-1 architecture model provides the best performance with an accuracy rate of 100% and the smallest Mean Squared Error (MSE) value of 0.0000214320 compared to other algorithms and architecture models. This finding indicates that the Levenberg-Marquardt algorithm is superior in predicting the development of GRDP in Simalungun Regency. The implementation of the results of this study is expected to help local governments and related agencies provide information on the development of GRDP in Simalungun Regency so that they can design more accurate and effective economic policies. In addition, this study also contributes to the development of artificial intelligence-based economic prediction methods, especially in the application of JST for the analysis of complex and dynamic regional economic data.
Downloads
References
R. Lehmann, The Forecasting Power of the ifo Business Survey, vol. 19, no. 1. Springer International Publishing, 2023. doi: 10.1007/s41549-022-00079-5.
R. Jayathilaka dkk., “Gross domestic product and logistics performance index drive the world trade: A study based on all continents,” PLoS ONE, vol. 17, no. 3 March, hal. 1–16, 2022, doi: 10.1371/journal.pone.0264474.
F. Kurniawan dan A. Mansyur, “Pemodelan Matematis Produk Domestik Regional Bruto Provinsi Sumatera Utara Berdasarkan Lapangan Usaha Dengan Regresi Linier Dan Nonlinier,” Jurnal Sains dan Teknologi, vol. 2, no. 1, hal. 145–158, 2023, doi: 10.58169/saintek.v2i1.153.
F. N. Zulfa dan N. Millati, “Analisis Pengaruh Produk Domestik Bruto (PDB), Nilai Tukar, Dan Suku Bunga Terhadap Foreign Direct Investment (FDI) Di Indonesia Periode Tahun 2015Q1 – 2022Q4,” Jurnal Ilmiah Wahana Pendidikan, vol. 9, no. 16, hal. 233–249, 2023, doi: 10.5281/zenodo.8238096.
Andriansyah, A. Nurwanda, dan B. Rifai, “Structural Change and Regional Economic Growth in Indonesia,” Bulletin of Indonesian Economic Studies, vol. 59, no. 1, hal. 91–117, 2023, doi: 10.1080/00074918.2021.1914320.
M. I. Sadali dan A. Musthofa, “Pergeseran Peran Sektor Ekonomi dan Pembangunan Infrastruktur di Yogyakarta Tahun 2016-2021,” Media Komunikasi Geografi, vol. 24, no. 2, hal. 153–167, 2023, doi: 10.23887/mkg.v24i2.65443.
S. C. Kaminitz, “The significance of GDP: a new take on a century-old question,” Journal of Economic Methodology, vol. 30, no. 1, hal. 1–14, 2023, doi: 10.1080/1350178X.2023.2167228.
P. K. Ozili, O. Oladipo, dan P. T. Iorember, “Effect of abnormal increase in credit supply on economic growth in Nigeria,” African Journal of Economic and Management Studies, vol. 14, no. 4, hal. 583–599, 2023, doi: 10.1108/AJEMS-02-2022-0036.
P. K. Ozili, A. Ademiju, dan S. Rachid, “Impact of financial inclusion on economic growth: review of existing literature and directions for future research,” International Journal of Social Economics, vol. 50, no. 8, hal. 1105–1122, 2022, doi: 10.1108/IJSE-05-2022-0339.
R. Khalfaoui, A. K. Tiwari, U. Khalid, dan M. Shahbaz, “Nexus between carbon dioxide emissions and economic growth in G7 countries: fresh insights via wavelet coherence analysis,” Journal of Environmental Planning and Management, vol. 66, no. 1, hal. 31–66, 2023, doi: 10.1080/09640568.2021.1978062.
D. Charlier dan F. Fizaine, “Decoupling gross domestic product and consumption of raw materials: A macro-panel analysis,” Sustainable Production and Consumption, vol. 36, hal. 194–206, Mar 2023, doi: 10.1016/J.SPC.2022.12.020.
M. Bi, “Impact of COVID-19 on environmental regulation and economic growth in China: A Way forward for green economic recovery,” Economic Analysis and Policy, vol. 77, hal. 1001–1015, Mar 2023, doi: 10.1016/J.EAP.2022.12.015.
T. S. Adebayo, S. Saint Akadiri, J. S. Riti, dan A. T. Odu, “Interaction among geopolitical risk, trade openness, economic growth, carbon emissions and Its implication on climate change in india,” Energy & Environment, vol. 34, no. 5, hal. 1305–1326, 2023, doi: 10.1177/0958305X221083236.
B. Maduwu, G. B. Panjaitan, E. Simarmata, R. Munte, dan C. Tobing, “Analisis Pertumbuhan Ekonomi Di Kabupaten Simalungun Tahun 2017-2021,” Cendekia Niaga, vol. 7, no. 2, hal. 153–160, 2023, doi: 10.52391/jcn.v7i2.790.
R. Setiyaningrum dan R. Erdkhadifa, “Analisis Faktor-Faktor Yang Mempengaruhi Pertumbuhan Ekonomi Di Daerah Istimewa Yogyakarta,” Jurnal Review Pendidikan dan Pengajaran, vol. 6, no. 2022, hal. 445–457, 2023, doi: 10.31004/jrpp.v6i4.20065.
Fanny Asyifa Br. Lumban Tobing dan Marliyah Marliyah, “Kajian Kontribusi Sektor Pertanian Terhadap Produk Domestik Regional Bruto Di Kabupaten Labuhan Batu Tahun 2018- 2022,” Journal Economic Excellence Ibnu Sina, vol. 2, no. 1, hal. 234–245, 2023, doi: 10.59841/excellence.v2i1.1015.
J. Khan, E. Lee, dan K. Kim, “A higher prediction accuracy–based alpha–beta filter algorithm using the feedforward artificial neural network,” CAAI Transactions on Intelligence Technology, vol. 8, no. 4, hal. 1124–1139, 2023, doi: 10.1049/cit2.12148.
S. Yu dkk., “Artificial Neural Network-Based Activities Classification, Gait Phase Estimation, and Prediction,” Annals of Biomedical Engineering, vol. 51, hal. 1471–1484, 2023, doi: 10.1007/s10439-023-03151-y.
A. Goel, A. K. Goel, dan A. Kumar, “The role of artificial neural network and machine learning in utilizing spatial information,” Spatial Information Research, vol. 31, no. 3, hal. 275–285, 2023, doi: 10.1007/s41324-022-00494-x.
F. Dube, N. Nzimande, dan P.-F. Muzindutsi, “Application of artificial neural networks in predicting financial distress in the JSE financial services and manufacturing companies,” Journal of Sustainable Finance & Investment, vol. 13, no. 1, hal. 723–743, 2023, doi: 10.1080/20430795.2021.2017257.
F. J. Delgado, E. Fernández-Rodríguez, R. García-Fernández, M. Landajo, dan A. Martínez-Arias, “Tax avoidance and earnings management: a neural network approach for the largest European economies,” Financial Innovation, vol. 9, no. 19, hal. 1–25, 2023, doi: 10.1186/s40854-022-00424-8.
M. E. Lokanan, “Predicting Money Laundering Using Machine Learning and Artificial Neural Networks Algorithms in Banks,” Journal of Applied Security Research, vol. 19, no. 1, hal. 20–44, 2024, doi: 10.1080/19361610.2022.2114744.
Q. Zhang, A. R. Abdullah, C. W. Chong, dan M. H. Ali, “A Study on Regional GDP Forecasting Analysis Based on Radial Basis Function Neural Network with Genetic Algorithm (RBFNN-GA) for Shandong Economy,” Computational Intelligence and Neuroscience, vol. 2022, hal. 1–12, 2022, doi: 10.1155/2022/8235308.
Q. Li, C. Yu, dan G. Yan, “A New Multipredictor Ensemble Decision Framework Based on Deep Reinforcement Learning for Regional GDP Prediction,” IEEE Access, vol. 10, hal. 45266–45279, 2022, doi: 10.1109/ACCESS.2022.3170905.
N. Puttanapong, N. Prasertsoong, dan W. Peechapat, “Predicting Provincial Gross Domestic Product Using Satellite Data and Machine Learning Methods: A Case Study of Thailand,” Asian Development Review, vol. 40, no. 2, hal. 39–85, 2023, doi: 10.1142/S0116110523400024.
S. D. Mourtas, E. Drakonakis, dan Z. Bragoudakis, “Forecasting the gross domestic product using a weight direct determination neural network,” AIMS Mathematics, vol. 8, no. 10, hal. 24254–24273, 2023, doi: 10.3934/math.20231237.
M. Y. Shams, Z. Tarek, E. Sayed, M. El, M. M. Eid, dan A. M. Elshewey, “Predicting Gross Domestic Product ( GDP ) using a PC-LSTM-RNN model in urban profiling areas,” Computational Urban Science, vol. 4, no. 3, hal. 1–21, 2024, doi: 10.1007/s43762-024-00116-2.
A. E. Tümer dan E. Kabaklarlı, “Forecasting Gross Domestic Product (GDP) of OECD Countries Based on Digital Transformation Indicators: ANN Approach,” EDPACS, vol. 69, no. 1, hal. 88–102, 2024, doi: 10.1080/07366981.2024.2312015.
İ. Yenilmez dan F. Mugenzi, “Estimation of conventional and innovative models for Rwanda’s GDP per capita: A comparative analysis of artificial neural networks and Box–Jenkins methodologies,” Scientific African, vol. 22, hal. e01902, Nov 2023, doi: 10.1016/J.SCIAF.2023.E01902.
X. Xu, R. A. Rogers, dan M. A. R. Estrada, “A Novel Prediction Model: ELM-ABC for Annual GDP in the Case of SCO Countries,” Computational Economics, vol. 62, no. 4, hal. 1545–1566, 2023, doi: 10.1007/s10614-022-10311-0.
A. G. Billé, A. Tomelleri, dan F. Ravazzolo, “Forecasting regional GDPs: a comparison with spatial dynamic panel data models,” Spatial Economic Analysis, vol. 18, no. 4, hal. 530–551, 2023, doi: 10.1080/17421772.2023.2199034.
L. Methods dan U. S. G. D. P. Growth, “Comparing Out-of-Sample Performance of Machine,” Computational Economics, vol. 62, no. 1, hal. 1567–1609, 2023, doi: 10.1007/s10614-022-10312-z.
S. Ghosh dan A. Ranjan, “A Machine Learning Approach to GDP Nowcasting: An Emerging Market Experience,” Bulletin of Monetary Economics and Banking, vol. 26, hal. 33–54, 2023, doi: 10.59091/1410-8046.2055.
M. M. Bukhari, B. F. Alkhamees, S. Hussain, A. Gumaei, A. Assiri, dan S. S. Ullah, “An Improved Artificial Neural Network Model for Effective Diabetes Prediction,” Complexity, vol. 2021, no. 1, hal. 1–10, 2021, doi: 10.1155/2021/5525271.
A. Kurani, P. Doshi, A. Vakharia, dan M. Shah, “A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting,” Annals of Data Science, vol. 10, no. 1, hal. 183–208, 2023, doi: 10.1007/s40745-021-00344-x.
C. Lu, S. Li, dan Z. Lu, “Building energy prediction using artificial neural networks: A literature survey,” Energy and Buildings, vol. 262, hal. 111718, Mei 2022, doi: 10.1016/j.enbuild.2021.111718.
I. S. Purba dkk., “Accuracy Level of Backpropagation Algorithm to Predict Livestock Population of Simalungun Regency in Indonesia,” in Journal of Physics: Conference Series, 2019, hal. 012014. doi: 10.1088/1742-6596/1255/1/012014.
A. Wanto dan J. T. Hardinata, “Estimations of Indonesian poor people as poverty reduction efforts facing industrial revolution 4.0,” IOP Conference Series: Materials Science and Engineering, vol. 725, no. 1, hal. 012114, 2020, doi: 10.1088/1757-899X/725/1/012114.
A. Wanto, S. Defit, dan A. P. Windarto, “Algoritma Fungsi Perlatihan pada Machine Learning berbasis ANN untuk Peramalan Fenomena Bencana,” RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, hal. 254–264, 2021, doi: 10.29207/resti.v5i2.3031.
I. Zuhrufillah, F. Anggraini, dan R. Dewantara, “Peramalan Jumlah Kasus Baru HIV Menurut Provinsi Menggunakan Machine Learning dengan Teknik Levenberg-Marquardt,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 4, hal. 212–221, 2022, doi: 10.47065/josyc.v3i4.2172.
A. Anas Manurung, I. Satria, dan A. Wanto, “Prediksi Perkembangan Produksi Tanaman Sayuran Dalam Upaya Pemenuhan Gizi Masyarakat dengan Algoritma Resilient,” Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK), vol. 8, no. 2, hal. 802–815, 2023, [Daring]. Tersedia pada: https://tunasbangsa.ac.id/ejurnal/index.php/jurasik
Safruddin, E. Efendi, R. M. Ch, dan A. Wanto, “Pemanfaatan Algoritma BFGS Quasi-Newton untuk Melihat Potensi Perkembangan Luas Tanaman Kopi di Pulau Sumatera,” Jurnal Media Informatika Budidarma, vol. 7, no. 1, hal. 473–483, 2023, doi: 10.30865/mib.v7i1.5524.
BPS, “PDRB Menurut Lapangan Usaha Atas Dasar Harga Berlaku [Seri 2010] (Milyar Rupiah),” Badan Pusat Statistik Kabupaten Simalungun, 2024. https://simalungunkab.bps.go.id/indicator/155/116/1/pdrb-menurut-lapangan-usaha-atas-dasar-harga-berlaku-seri-2010-,html (diakses 26 Maret 2024).
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Algoritma JST untuk Prediksi Perkembangan PDRB Menurut Lapangan Usaha Atas Dasar Harga Berlaku
Pages: 374-385
Copyright (c) 2024 Wendi Robiansyah, Harly Okprana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).