Penerapan Algoritma Logika Fuzzy Mamdani Untuk Optimalisasi Stok Dari Berbagai Jenis Spareparts Handphone


  • Nadia Muntaja Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • Sriani Sriani * Mail Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • (*) Corresponding Author
Keywords: Fuzzy Mamdani; Stock Optimization; Spareparts; Handphone

Abstract

Effective inventory management is crucial for businesses in the mobile phone spare parts industry, where accurate stock levels directly impact operational efficiency and customer satisfaction. Traditional stock management methods are often inadequate in dealing with the uncertainty and complexity of demand forecasting. In the mobile phone repair and distribution industry, demand for spare parts varies significantly depending on factors such as new model launches, device failure rates, and fluctuating market trends. Conventional stock management systems often fail to handle this variability, leading to issues like stock-outs, which harm customer satisfaction, or overstocking, which increases storage costs and the risk of obsolescence. This research addresses these challenges by applying the Fuzzy Mamdani method to optimize spare parts inventory. The study focuses on transforming crisp stock data into fuzzy inputs to improve prediction accuracy. Data from UD.WSP for the year 2023 is fuzzified by incorporating variables such as initial stock, sales volume, and additional stock, with the output variable being the final stock level. The spare parts analyzed include LCDs, batteries, chargers, screen protectors, speakers, RAM, flex cables, rear cameras, front cameras, and SIM trays. The application of the Fuzzy Mamdani method resulted in a Mean Absolute Percentage Error (MAPE) of 11%, indicating a high level of prediction accuracy. These findings demonstrate that the Fuzzy Mamdani method is a viable solution for optimizing spare parts inventory management, offering an advanced approach to managing inventory amidst uncertainty.

Downloads

Download data is not yet available.

References

P. W. Nofiani and M. C. Mursid, “Pentingnya Perilaku Organisasi dan Strategi Pemasaran dalam Menghadapi Persaingan Bisnis di Era Digital,” J. Logistik Bisnis, vol. 11, no. 2, pp. 71–77, 2021, [Online]. Available: https://ejurnal.poltekpos.ac.id/index.php/logistik/index

S. Indrawati and A. F. Rachmawati, “Edukasi Legalitas Usaha sebagai Upaya Perlindungan Hukum bagi Pemilik UMKM,” J. Dedik. Huk., vol. 1, no. 3, pp. 231–241, 2021, doi: 10.22219/jdh.v1i3.17113.

Y. Anis, E. N. Wahyudi, and H. C. Kurniawan, “Metode Waterfall dalam Pengembangan Sistem Inventaris Guna Meningkatkan Efisiensi Manajemen Stok Barang,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 6, no. 2, pp. 329–338, 2024, doi: 10.47233/jteksis.v6i2.1351.

M. J. Siregar, “Pengendalian Stok Spareparts Mobil Dengan Metode EOQ dan Min-Max Inventory,” J. Serambi Eng., vol. 6, no. 3, pp. 2096–2101, 2021, doi: 10.32672/jse.v6i3.3121.

A. H. Elyas and J. Prayoga, “Implementasi Data Mining Pola penjualan Sparepart Motor Honda Pada Pt Rotella Persada Mandiri Dengan Menggunakan Algoritma Apriori,” Device J. Inf. Syst. Comput. Sci. Inf. Technol., vol. 1, no. 1, pp. 22–31, 2020, doi: 10.46576/device.v1i1.698.

R. P. H. Nst and Yahfizham, “Sistem Informasi Manajemen Proyek Berbasis Web Pendataan Suku Cadang Sepeda Motor,” JIB J. Informatics Busisnes, vol. 02, no. 01, pp. 52–56, 2024, [Online]. Available: https://jurnal.ittc.web.id/index.php/jibs/article/view/996

S. Yuliantika and D. L. Kartika, “Implementasi Metode Fuzzy Mamdani sebagai Deteksi Awal Banjir Lokal di Bendung Gerak Serayu,” Sq. J. Math. Math. Educ., vol. 4, no. 1, pp. 17–25, 2022, doi: 10.21580/square.2022.4.1.11177.

A. W. Alwendi and K. Samosir, “Pengembangan Dan Implementasi Metode Fuzzy Mamdani Untuk Penilaian Kinerja Penelitian Dosen,” J. Tek. Inf. dan Komput., vol. 5, no. 2, p. 333, 2022, doi: 10.37600/tekinkom.v5i2.533.

M. Dary Daffa Haque, “Penerapan Logika Fuzzy Mamdani Untuk Optimasi Persediaan Stok Makanan Hewan,” Media Online), vol. 4, no. 1, pp. 427–437, 2023, doi: 10.30865/klik.v4i1.1160.

V. M. Nasution and G. Prakarsa, “Optimasi Produksi Barang Menggunakan Logika Fuzzy Metode Mamdani,” J. Media Inform. Budidarma, vol. 4, no. 1, p. 129, 2020, doi: 10.30865/mib.v4i1.1719.

B. H. Sulistyo, “IN-FEST 2024 Penerapan Metode Fuzzy Tsukamoto Untuk Pengambilan Keputusan Perencanaan Produksi Sebagai Optimalisasi Persediaan Stok IN-FEST 2024,” vol. 2, pp. 47–57, 2024.

A. Safitri, A. Azzahra, and S. T. Kurnia, “Pengendalian Untuk Mengoptimalkan Produksi Mie Pada Warung Mie Pedas Dengan Menggunakan Logika Fuzzy Berbasis Metode Tsukamoto,” J. Deep Learn. Comput. Vis. Digit. Image Process., vol. 2, no. 1, pp. 21–28, 2024, [Online]. Available: https://doi.org/10.61255/decoding.v2i1.316

S. Puji Astuti, “Pemanfaatan Software Matrix Laboratory (Matlab) Untuk Meningkatkan Minat Belajar Mahasiswa Dalam Pembelajaran Fisika Kinematika,” J. Pendidik. Berkarakter, vol. 3, no. 2, pp. 54–57, 2020, doi: https://doi.org/10.31764/pendekar.v3i2.2892.

U. Bakti, Hairudin, and R. Setiawan, “PENGARUH HARGA, PERSONAL SELLING, KUALITAS PRODUK DAN WORD OF MOUTH TERHADAP KEPUTUSAN PEMBELIAN MOTOR PADA DEALER PT. YAMAHA PUTERA LANGKAPURA,” J. Cakrawal Ilm., vol. 2, no. 4, pp. 1271–1280, 2021, doi: https://doi.org/10.53625/jcijurnalcakrawalaindonesia.v1i1.343.

S. Susanti and G. R. Nawangsit, “Penerapan Metode Fuzzy Tsukamoto Pada Sistem Pendukung Keputusan Penentuan Pemberian Beasiswa,” JIKA (Jurnal Inform., vol. 7, no. 3, p. 248, 2023, doi: 10.31000/jika.v7i3.7626.

E. G. Wahyuni, “Membandingkan Tingkat Efisiensi Metode Tsukamoto dan Sugeno untuk kasus Pneumonia,” J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 7, no. 2, p. 94, 2022, doi: 10.24014/coreit.v7i2.15085.

U. Athiyah, A. P. Handayani, M. Y. Aldean, N. P. Putra, and R. Ramadhani, “Sistem Inferensi Fuzzy: Pengertian, Penerapan, dan Manfaatnya,” J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 1, no. 2, pp. 73–76, 2021, doi: 10.20895/dinda.v1i2.201.

M. Furqan, A. Halim Hasugian, M. Siddik Hsb, and F. Sains dan Teknologi, “Penentuan Kualitas Bibit Padi Menggunakan Metode Fuzzy Mamdani,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 529–539, 2021.

E. R. Y. SAHULATA, H. J. Wattimanela, and M. S. Noya Van Delsen, “Penerapan Fuzzy Inference System Tipe Mamdani Untuk Menentukan Jumlah Produksi Roti Berdasarkan Data Jumlah Permintaan Dan Persediaan (Studi Kasus Pabrik Cinderela Bread House Di Kota Ambon),” BAREKENG J. Ilmu Mat. dan Terap., vol. 14, no. 1, pp. 079–090, 2020, doi: 10.30598/barekengvol14iss1pp079-090.

N. J. Aruan, “Implementasi Fuzzy Mamdani Menentukan Tingkat Kepuasan Penumpang Trans Metro Deli Kota Medan,” J. Teknol. Sist. Inf. dan Apl., vol. 6, no. 3, pp. 334–342, 2023, doi: 10.32493/jtsi.v6i3.30382.

N. Harefa and M. Marbun, “Implementasi Logika Fuzzy Mamdani Untuk Mengidentifikasi Tingkat Kecanduan Pelajar Terhadap Game Online,” JOISIE J. Inf. Syst. Informatics Eng., vol. 4, no. Desember, pp. 128–138, 2020.

P. S. P. Sitorus, “MENGETAHUI WAKTU MATANGNYA PANGGANGAN DANGING SAPI DENGAN METODE MAMDANI DENGAN MODEL SEGITIGA DAN MOM,” J. Ilm. SP STINDO Prof., vol. IX, no. 1, pp. 1–14, 2023, [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK558907/


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma Logika Fuzzy Mamdani Untuk Optimalisasi Stok Dari Berbagai Jenis Spareparts Handphone

Dimensions Badge
Article History
Submitted: 2024-08-21
Published: 2024-08-26
Abstract View: 600 times
PDF Download: 337 times
Issue
Section
Articles