Penerapan Algoritma K-Medoids Data Mining untuk Clustering Wilayah Penderita Demam Berdarah Berdasarkan Data Set
Abstract
Disease is a disorder that occurs in the body, either in form or function, so that the body cannot work properly or normally. Dengue fever (DF) is an infection caused by the dengue virus that can cause accurate fever. Dengue fever is still a serious problem for public health. The Health Service in each region has the task of helping the community in dealing with dengue fever cases. Data sets are collections of data arranged in a structured format, such as tables or files, and contain information from various sources. In this study, data mining analysis was carried out using the Clustering technique using the K-Medoids method. The use of the K-Medoids Algorithm is said to be better at grouping datasets than k-means because K-Medoids is one of the effective clustering methods for dealing with small datasets. Data mining can be interpreted as the process of selection, exploration, and modeling of large amounts of data to find patterns or tendencies that are usually not realized. Clustering is a process of grouping records, observations, or grouping classes that have similar objects. The results obtained from the study show that the application of the K-Medoids algorithm can be done to form 2 clusters. In the first cluster there are 4 cluster results and in the second cluster there are 6 cluster results.
Downloads
References
M. Bagus Herlambang and L. Theresia, “Pemetaan Kota/Kabupaten Endemis Demam Berdarah Dengue Dengan Analisis Data Science Menggunakan Algoritma Clustering,” Multimed. Jar., vol. 8, no. 1, 2023.
S. Aripin, T. Gulo, and G. P. N. S. P. Angin, “Penerapan Metode K-Medoids Clustering Pada Penanganan Kasus Demam Berdarah,” BEES Bull. Electr. Electron. Eng., vol. 3, no. 3, pp. 139–146, 2023, doi: 10.47065/bees.v3i3.3173.
N. A. Mufid, D. R. N. Hanum, and A. H. Sidiq, “Clustering Kabupaten/Kota di Jawa Tengah Tahun 2022 berdasarkan Jumlah Kasus Kemunculan Penyakit dengan Algoritma K-Means,” J. Pendidik. Mat., vol. 1, no. 1, p. 14, 2023, doi: 10.47134/ppm.v1i1.107.
N. Puspitasari, A. Ardin Maulana, Rosmasari, and F. Alameka, “K-Means untuk Klasterisasi Daerah Rawan Penyakit Demam Berdarah K-Means for Clustering of Dengue Fever Prone Areas,” J. SISFOTENIKA, vol. 13, no. 1, pp. 40–52, 2023, [Online]. Available: http://sisfotenika.stmikpontianak.ac.id/index.php/ST.
R. D. Christyanti, A. Arif, A. P. Utomo, and M. Ayyub, “Implementasi Metode Fuzzy C-Means dalam Clustering Wilayah Rawan Penyakit Demam Berdarah,” J. Math. Educ. Sci., vol. 6, no. 1, pp. 11–17, 2022, doi: 10.32665/james.v6i1.933.
M. Rivalda, E. M. Hidayat, M. A. Gunawan, and D. Defriyanto, “Penerapan Metode Clustering Dalam Upaya Pencegahan Penyakit Demam Berdarah Menggunakan Algoritma K-Means (Studi Kasus: Kota Tasikmalaya),” J. Larik Ldng. Artik. Ilmu Komput., vol. 3, no. 1, pp. 1–10, 2023, doi: 10.31294/larik.v3i1.1774.
T. M. M. Tyas and A. I. Purnamasari, “Penerapan Algoritma K-means dalam Mengelompokkan Demam Berdarah Dengue Berdasarkan Kabupaten,” Blend Sains J. Tek., vol. 1, no. 4, pp. 277–283, 2023, doi: 10.56211/blendsains.v1i4.231.
S. Lestari, “Penerapan Algoritma K-Means Untuk Pemetaan Penyebaran Penyakit Demam Berdarah (DBD) Pada Kabupaten/Kota Di Jawa Barat,” J. Pendidik. dan Konseling, vol. 4, pp. 1349–1358, 2022.
A. N. Thamrin, “Penerapan Algoritma Clustering K-Medoids pada Penyebaran Penyakit Demam Berdarah di Kota Palopo,” J. Penelit. Inov. (JUPIN, vol. 4, no. 3, pp. 1225–1232, 2024.
R. K. Utami, S. Windarti, and M. Muslim, “Analisis Data Penyakit DBD Dengan K-Means Clustering di Kabupaten Bantul Menggunakan Data mining,” J. Manaj. Inf. dan Adm. Kesehat., vol. 6, no. 2, pp. 43–49, 2023.
S. E. Saqila, I. P. Ferina, and A. Iskandar, “Analisis Perbandingan Kinerja Clustering Data Mining Untuk Normalisasi Dataset,” J. Sist. Komput. dan Inform., vol. 5, 2023, doi: 10.30865/json.v5i2.6919.
Y. F. Wijaya and A. Triayudi, “Perbandingan Algoritma Klasifikasi Data Mining Pada Prediksi Penyakit Diabetes,” J. Comput. Syst. Informatics, vol. 5, no. 1, pp. 165–174, 2023, doi: 10.47065/josyc.v5i1.4614.
D. Zulhan, F. A. Nurfaizal, and T. N. Alam, “Penyelesaian Masalah Ketidakseimbangan Data Melalui Teknik Oversampling dan Undersampling pada Klasifikasi Siswa Tidak Naik Kelas,” vol. 9, no. 01, pp. 43–52, 2024.
D. P. Indini, S. R. Siburian, and D. P. Utomo, “Implementasi Algoritma DBSCAN untuk Clustering Seleksi Penentuan Mahasiswa yang Berhak Menerima Beasiswa Yayasan,” in ESCAF, 2022, pp. 325–331.
D. P. Indini, Mesran, and Dito Putro Utomo, “Penerapan Data Mining Dalam Pengelompokan Data Reseller di Telkomsel Authorized Partner (TAP) Deli Tua Dengan Algoritma K-Means,” J. Ilm. Media Sisfo, vol. 17, no. 2, pp. 189–202, 2023, doi: 10.33998/mediasisfo.2023.17.2.1391.
T. Tendean and W. Purba, “Analisis Cluster Provinsi Indonesia Berdasarkan Produksi Bahan Pangan Menggunakan Algoritma K-Means,” J. Sains dan Teknol., vol. 1, no. 2, pp. 5–11, 2020.
H. Pandiangan, “Penerapan Data Mining Dalam Clustering Produksi Daging Sapi Di Indonesia Menggunakan Algoritma K-Means,” J. Comput. Networks, Archit. High Perform. Comput., vol. 1, no. 2, pp. 37–44, 2019, doi: 10.47709/cnapc.v1i2.239.
R. Zulfiana, S. S. Hilabi, F. Nurapriani, and B. Huda, “Peningkatan Minat Digital Skill Menggunakan Algoritma K-Medoids Clustering Pada Karyawan,” J. Inf. Syst. Res., vol. 5, no. 3, pp. 811–818, 2024, doi: 10.47065/josh.v5i3.4994.
U. Linarti, A. H. Soleliza Jones, L. Zahrotun, and A. Rahmawati, “Penerapan Metode K-Medoids Guna Pengelompokan Data Usaha Mikro, Kecil dan Menengah (UMKM) Bidang Kuliner Di Kota Yogyakarta,” J. Ilmu Komput. dan Sist. Inf., vol. 7, no. 1, pp. 37–45, 2024, doi: 10.55338/jikomsi.v7i1.2194.
R. Wahyusar, “Penerapan Algoritma K-Medoids Untuk Mengelompokkan Status Obesitas,” SIMETRIS2, vol. 18, no. 1, pp. 329–334, 2024.
A. Purnomo Sidik, Hermansyah, and M. Amin, “Pengelompokan Tanaman Buah Berdasrkan Kadar Vitamin Dengan Menerapkan Algoritma K-Medoids,” J. Sistim Inf. dan Teknol., vol. 5, no. 1, pp. 63–67, 2023, doi: 10.37034/jsisfotek.v5i1.202.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma K-Medoids Data Mining untuk Clustering Wilayah Penderita Demam Berdarah Berdasarkan Data Set
Pages: 1128-1135
Copyright (c) 2024 Diny Wahyuni

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















