Analisis Sentimen Program Makan Gratis Pada Media Sosial X Menggunakan Metode NLP
Abstract
This study aims to analyze public sentiment toward the free meal program initiated on Social Media X. Utilizing Natural Language Processing (NLP) methods klasification navie bayes, this research processes text data collected from various user comments and posts on the platform. The collected data is then classified into positive, negative, and neutral sentiment categories. The analysis process involves text preprocessing techniques, including tokenization, stemming, and stop words removal, to enhance the accuracy of the sentiment model. The analysis results show that most users responded positively to the program, particularly regarding the social benefits it offers. However, some negative sentiments were also detected, primarily related to the program's implementation and the quality of the provided meals. These findings offer valuable insights for program organizers to comprehensively understand public perception and make improvements in the future. This study also highlights the importance of using NLP in social media data analysis as a tool to identify and understand public opinion on a large scale.
Downloads
References
N. Afifa, R. E. Saputra, and R. A. Nugrahaeni, “Implementasi NLP Pada Chatbot Layanan Akademik Dengan Algoritma Bert,” e-Proceedings Eng., vol. 10, no. 1, pp. 383–387, 2023.
E. H. Muktafin, K. Kusrini, and E. T. Luthfi, “Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing,” J. Eksplora Inform., vol. 10, no. 1, pp. 32–42, 2020, doi: 10.30864/eksplora.v10i1.390.
A. Info, “Analisis Sentimen Pada Ulasan Produk Dengan Metode Natural Language Processing ( NLP ) ( Studi Kasus Zalika Store 88 Shopee ),” vol. 17, no. 1, pp. 120–128, 2024.
B. Mas Pintoko and K. Muslim, “Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naïve Bayes Classifier,” e-Proceeding Eng., vol. 5, no. 3, pp. 8121–8130, 2020.
M. Prasetya, M. Wulandari, and S. A. Nikmah, “Implementasi NLP (Natural Language Processing) Dasar pada Analisis Sentiment Review Spotify,” Stain. (Seminar Nas. Teknol. Sains), vol. 3, no. 1, pp. 145–153, 2024.
N. Nurwanda, N. Suarna, and W. Prihartono, “Penerapan Nlp (Natural Language Processing) Dalam Analisis Sentimen Pengguna Telegram Di Playstore,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1841–1846, 2024, doi: 10.36040/jati.v8i2.8469.
F. Rayyan, Pengembangan chatbot untuk aplikasi online chat telegram dengan pendekatan klasifikasi emosi pada teks menggunakan metode indobert-lite. in Repository.Uinjkt.Ac.Id. 2022.
Nugroho, D. G., Chrisnanto, Y. H., & Wahana, A. (2015). Analisis Sentimen Pada Jasa Ojek Online menggubakan metode navie bayes (Nugroho dkk.) 156–161.
A. Mukti, A. D. Hadiyanti, A. Nurlaela, and J. Panjaitan, “Sistem Analisa Sentiment Bakal Calon Presiden 2024 Menggunakan Metode NLP Berbasis Web,” Soscied, vol. 6, no. 1, p. p-ISSN, 2023.
D. Suryani, A. Yulianti, E. L. Maghfiroh,“Quality Classification of Palm Oil Products Using Naïve Bayes Method,” Sist. J. Sist. 2021.
Wahyu Sejati, Ankur Singh Bist, and Amirsyah Tambunan, “Pengembangan Analisis Sentimen dalam Rekayasa Software Engineering menggunakan tinjauan literatur sistematis,” J. MENTARI Manajemen, Pendidik. dan Teknol. Inf., vol. 2, no. 1, pp. 95–103, 2023, doi: 10.33050/mentari.v2i1.377.
M. K. Insan, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di,” J. Mhs. Tek. Inform., vol. 7, no. 1, pp. 478–483, 2023.
M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Comparison of Naïve Bayes and Support Vector Machine Methods in Twitter Sentiment Analysis,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020.
S. Fanissa, M. A. Fauzi, and S. Adinugroho, “Analisis Sentimen Pariwisata di Kota Malang Menggunakan Metode Naive Bayes dan Seleksi Fitur Query Expansion Ranking,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 8, pp. 2766–2770, 2022, [Online]. Available: http://j-ptiik.ub.ac.id
A. Mukti, A. D. Hadiyanti, A. Nurlaela, and J. Panjaitan, “Sistem Analisa Sentiment Bakal Calon Presiden 2024 Menggunakan Metode NLP Berbasis Web The Sentiment Analysis System For the 2024 Presidential Candidates Uses Web-Based NLP Method,” vol. 6, no. 1, 2024.
G. F. Grandis, Y. Arumsari, and Indriati, “Seleksi Fitur Gain Ratio pada Analisis Sentimen Kebijakan Pemerintah Mengenai Pembelajaran Jarak Jauh dengan K-Nearest Neighbor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 8, pp. 3507–3514, 2021.
D. Darmanto, N. I. Pradasari, and E. Wahyudi, “Sistem Deteksi Plagiarisme Tugas Akhir Mahasiswa Berbasis Natural Language Processing Menggunakan Algoritma Jaro-Winkler dan TF-IDF,” Smart Comp Jurnalnya Orang Pint. Komput., vol. 13, no. 1, pp. 201–211, 2024, doi: 10.30591/smartcomp.v13i1.6375.
K. S. Putri, I. R. Setiawan, and A. Pambudi, “Analisis Sentimen Terhadap Brand Skincare Lokal Menggunakan Naïve Bayes Classifier,” Technol. J. Ilm., vol. 14, no. 3, p. 227, 2023, doi: 10.31602/tji.v14i3.11259.
R. Sari and R. Y. Hayuningtyas, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Pada Wisata TMII Berbasis Website,” Indones. J. Softw. Eng., vol. 5, no. 2, pp. 51–60, 2020, doi: 10.31294/ijse.v5i2.6957.
D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,” J. Tekno Kompak, vol. 15, no. 1, p. 131, 2021, doi: 10.33365/jtk.v15i1.744.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Program Makan Gratis Pada Media Sosial X Menggunakan Metode NLP
Pages: 1033-1042
Copyright (c) 2024 Wisda Anggriyani, Muhammad Fakhriza

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















