Penerapan Data Mining dalam Menentukan Produk Penjualan Terlaris Menggunakan Algoritma Apriori


  • Erza Muhammad Randi Universitas Nasional, Depok, Indonesia
  • Rima Tamara Aldisa * Mail Universitas Nasional, Depok, Indonesia
  • (*) Corresponding Author
Keywords: Data Mining; Apriori Algorithm; Association Rules; Tansaction Analysis; Stock Management

Abstract

Information regarding best-selling product data is something that is important to know when analyzing a store's business. Associations between best-selling products can provide useful information for increasing sales profits. However, in reality, the Mabestie Bouquet Store experiences limited problems in analyzing data on best-selling products and their associations using manual calculations only. Therefore, this research aims to create a website for calculating data analysis of best-selling products and their associations using a priori data mining algorithms. The information obtained is data on best-selling products and associations between products in order to develop business strategy progress in the store so that you can know for sure which products need to increase stock and the associations between products that are often purchased by customers. Stock availability of goods that is not managed well has an impact on the shop, for example if goods run out when consumer demand is high then there will be no purchases and this will reduce shop profits. Data mining is the process of utilizing and processing data to find patterns or related relationships in large data sets, and this technique has been widely applied in various fields, including the sale of bouquet products. By using data mining, stores can identify customer preferences through in-depth analysis of complex bouquet sales data. This research focuses on using the Apriori algorithm to analyze sales transaction data at the Mabestie Bouquet Shop. The Apriori algorithm, as a method of association rules, is used to determine combination patterns of itemsets and association rules systematically and accurately. The analysis results show that the items with the highest support value are the Birthday Bouquet Topper and Original Silverqueen Bouquet with a value of 13.3%, and the highest confidence value with a value of 52.6%. Based on this data, it is known that the pattern of purchasing the best-selling product is that if a customer buys a Birthday Bouquet Topper, they will also buy an Original Silverqueen Bouquet product. Based on this data, these two products are products that must be provided with more optimal stock in order to increase sales profits. These findings provide important insights into customer preferences and bouquet purchasing patterns, which can be developed to design more effective marketing strategies and increase the effectiveness of promotions and in-store sales.

Downloads

Download data is not yet available.

References

D. Anggraini, S. A. Putri, and L. A. Utami, “Implementasi Algoritma Apriori Dalam Menentukan Penjualan Mobil Yang Paling Diminati Pada Honda Permata Serpong,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 302, 2020, doi: 10.30865/mib.v4i2.1496.

M. D. Mahbub F, R. Calvinda P, and F. Zuhriyah, “Simple Bouquet Homemade sebagai Alternatif Bisnis Kreatif,” PADIMAS J. Pengabdi. Masy., vol. 1, no. 1, pp. 14–17, 2022, doi: 10.32665/padimas.v1i1.479.

R. Daeli, E. Rahayu, and E. Hadinata, “Analisis Prediksi Persediaan Stok Barang Pada Toko Santi Fotokopi Menggunakan Algoritma Apriori Berbasis Website,” Indones. J. Comput. Sci., vol. 2, no. 2, pp. 111–119, 2023, doi: 10.31294/ijcs.v2i2.2508.

Y. Astuti and H. Novitasari, “Algoritma Apriori sebagai Penentu Pola Penjualan Produk Jeans,” J. Ilm. Edutic Pendidik. dan Inform., vol. 9, no. 1, pp. 20–28, 2022, doi: 10.21107/edutic.v9i1.7416.

A. J. P. Sibarani, “Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 262–276, 2020, doi: 10.35957/jatisi.v7i2.195.

N. A. Putri, N. Faidah Putri, L. H. Suriyanti, and M. D. Aristi, “Analysis of Business Strategy Management Bucket Snackdf Pekanbaru Analisis Manajemen Strategi Usaha Bucket Snackdf Pekanbaru,” Res. Account. J., vol. 1, no. 3, pp. 394–404, 2019, [Online]. Available: http://journal.yrpipku.com/index.php/raj

F. B. Nauw, “Pemanfaatan Data Mining dalam Memprediksi Transaksi Penjualan Menggunakan Algoritma Apriori,” J. Sist. Cerdas dan Rekayasa, vol. 5, no. 1, pp. J2--J2, 2023.

S. Sutrisno, “Penerapan Algoritma Apriori Untuk Mencari Pola Penjualan Produk Dana Pada Pt Bank Rakyat Indonesia (Persero) Tbk Kanca Jakarta Pasar Minggu,” J. Sist. Inf. dan Inform., vol. 3, no. 1, pp. 12–26, 2020, doi: 10.47080/simika.v3i1.834.

M. I. A. Effendi and R. D. Indahsari, “Implementasi Algoritma Apriori untuk Penentuan Kombinasi Barang bagi Sales Motorist,” J. Eksplora Inform., pp. 153–163, 2023, doi: 10.30864/eksplora.v12i2.866.

N. N. Merliani, N. I. Khoerida, N. T. Widiawati, L. A. Triana, and P. Subarkah, “Penerapan Algoritma Apriori Pada Transaksi Penjualan Untuk Rekomendasi Menu Makanan Dan Minuman,” J. Nas. Teknol. dan Sist. Inf., vol. 8, no. 1, pp. 9–16, 2022, doi: 10.25077/teknosi.v8i1.2022.9-16.

C. I. Wiryawan, Y. R. W. Utami, and D. Nugroho, “Algoritma Apriori Untuk Penentuan Assosiasi Penjualan Barang,” J. Teknol. Inf. dan Komun., vol. 9, no. 1, p. 7, 2021, doi: 10.30646/tikomsin.v9i1.538.

N. Sinabang and P. M. Hasugian, “Application of Data Mining for Sales Strategy at Ria Busana Using the A priori Algorithm,” J. Teknol. Komput., vol. 14, no. 2, pp. 121–127, 2020, [Online]. Available: https://www.login.seaninstitute.org/index.php/Login/article/view/40/53

R. Randy, “Penerapan Data Mining untuk Menentukan Promosi Penjualan Menggunakan Metode Algoritma Apriori (Studi Kasus: Coffe Shop Kopi Bonjera Jakarta),” vol. 1, no. 6, pp. 1522–1531, 2023, [Online]. Available: https://repository.unpam.ac.id/11032/

A. Y. Ningsih, V. Sihombing, and S. P. Sitorus, “Implementation of a priori algorithm for book lending at state high school library I Silima Pungaga-Punga Parongil,” Sinkron, vol. 7, no. 1, pp. 196–203, 2022, doi: 10.33395/sinkron.v7i1.11257.

P. Edastama, A. S. Bist, and A. Prambudi, “Implementation Of Data Mining On Glasses Sales Using The Apriori Algorithm,” Int. J. Cyber IT Serv. Manag., vol. 1, no. 2, pp. 159–172, 2021, doi: 10.34306/ijcitsm.v1i2.46.

Syarief Afifi Sumantri and Hermawan Syahputra, “Penerapan Data Mining Untuk Menganalisis Penjualan Produk Menggunakan Algoritma Apriori Berbasis WEB,” J. Ris. Rumpun Mat. Dan Ilmu Pengetah. Alam, vol. 2, no. 2, pp. 135–146, 2023, doi: 10.55606/jurrimipa.v2i2.1532.

P. Dwi Cahya and D. Durbin Hutagalung, “Penerapan Data Mining Menggunakan Algoritma Apriori Pada Penjualan Produk Sembako Berbasis Web (Studi Kasus: Warung Abah Murdika),” J. Ilmu Komput. dan Pendidik., vol. 1, no. 6, pp. 1465–1469, 2023, [Online]. Available: https://journal.mediapublikasi.id/index.php/logic

N. Farida, M. T. Chulkamdi, and Z. Wulansari, “Application of Data Mining By Using a Priori Algorithm To Improve Customer Purchasing Decisions At Mikamart Blitar Store,” Int. J. Multidiscip. Res. Lit., vol. 1, no. 5, pp. 526–534, 2022, doi: 10.53067/ijomral.v1i5.58.

M. Hartono and F. A. Sianturi, “Penerapan Algoritma Apriori Dalam Menentukan Merek Pakaian Yang Paling Diminati Pada Darma Utama (DM Fashion),” J. Media Inform., vol. 3, pp. 71–78, 2021, [Online]. Available: http://ejournal.sisfokomtek.org/index.php/jumin/article/view/216%0Ahttp://ejournal.sisfokomtek.org/index.php/jumin/article/download/216/207

E. Ndruru, “Penerapan Algoritma Apriori Dalam Memprediksi Penjualan Sepeda Motor,” Bull. Inf. Technol., vol. 4, no. 4, pp. 481–487, 2023, doi: 10.47065/bit.v4i4.1054.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Data Mining dalam Menentukan Produk Penjualan Terlaris Menggunakan Algoritma Apriori

Dimensions Badge
Article History
Submitted: 2024-08-19
Published: 2024-08-28
Abstract View: 605 times
PDF Download: 378 times
Issue
Section
Articles