Spatial Data Processing for Mangrove Ecotourism Development: Spatio-temporal Analysis through NDVI, NDBI, and SAVI Using Landsat 8/9 OLI


  • Yerik Afrianto Singgalen * Mail Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
  • (*) Corresponding Author
Keywords: Remote Sensing; Spatio-temporal Analysis; NDVI; NDBI; SAVI

Abstract

This study evaluates the ecological trends on Tagalaya Island by analyzing the NDBI, NDVI, and SAVI indices from 2013 to 2024. The NDBI data reveals a notable improvement in vegetation conditions over this period. In 2013, NDBI values ranged from -0.8818104 to -0.3152868, indicating poor vegetation health. Although there was a slight deterioration by 2018, with values ranging from -0.8922318 to -0.2858251, a significant recovery was observed by 2024, with values ranging from -0.7118425 to 0.027627. NDVI values also demonstrate positive changes, with 2013 values ranging from -0.340193 to 0.4773595 and increasing substantially by 2024 to a range of -0.2155555 to 0.9997522, reflecting enhanced vegetation coverage and health. Similarly, SAVI values show improvement, increasing from -0.1651871 to 0.3954751 in 2013 to -0.0731807 to 0.6464996 in 2024. These trends suggest that Tagalaya Island has experienced successful ecological recovery or effective conservation measures. Continued monitoring is essential to sustain and further these positive developments, ensuring ongoing environmental stability and health.

Downloads

Download data is not yet available.

References

A. Rehman et al., “Groundwater potential zone mapping using GIS and Remote Sensing based models for sustainable groundwater management,” Geocarto Int., vol. 39, no. 1, p., 2024, doi: 10.1080/10106049.2024.2306275.

F. Abdalla, K. Moubark, and M. Abdelkareem, “Groundwater potential mapping using GIS, linear weighted combination techniques and geochemical processes identification, west of the Qena area, Upper Egypt,” J. Taibah Univ. Sci., vol. 14, no. 1, pp. 1350–1362, 2020, doi: 10.1080/16583655.2020.1822646.

M. B. Moisa et al., “GIS and remote sensing Based Analysis of Land use and Land cover Change in the Upper Anger watershed, Western Ethiopia,” Geol. Ecol. Landscapes, vol. 00, no. 00, pp. 1–10, 2023, doi: 10.1080/24749508.2023.2237323.

Ahsanullah, S. H. Khan, R. Ahmed, and M. Luqman, “Morphological change detection along the shoreline of Karachi, Pakistan using 50 year time series satellite remote sensing data and GIS techniques,” Geomatics, Nat. Hazards Risk, vol. 12, no. 1, pp. 3358–3380, 2021, doi: 10.1080/19475705.2021.2009044.

A. Tella, A. L. Balogun, and I. Faye, “Spatio-temporal modelling of the influence of climatic variables and seasonal variation on PM10 in Malaysia using multivariate regression (MVR) and GIS,” Geomatics, Nat. Hazards Risk, vol. 12, no. 1, pp. 443–468, 2021, doi: 10.1080/19475705.2021.1879942.

A. Q. Dammag, D. Jian, G. Cong, B. Q. Derhem, and H. Z. Latif, “Predicting spatio-temporal land use / land cover changes and their drivers forces based on a cellular automated Markov model in Ibb City, Yemen,” Geocarto Int., vol. 38, no. 1, p., 2023, doi: 10.1080/10106049.2023.2268059.

Z. Deng, J. Cao, and Y. Hu, “Spatial and temporal evolution of landscape pattern in downtown area of Jixi City, China,” Eur. J. Remote Sens., vol. 53, no. sup1, pp. 104–113, 2020, doi: 10.1080/22797254.2020.1713024.

J. Osorio Arjona and J. C. García Palomares, “Spatio-temporal mobility and Twitter: 3D visualisation of mobility flows,” J. Maps, vol. 16, no. 1, pp. 153–160, 2020, doi: 10.1080/17445647.2020.1778549.

M. Crespo, A. Follmann, C. Butsch, and P. Dannenberg, “International Retirement Migration: mapping the spatio-temporal growth of foreign-owned properties in Cotacachi, Ecuador,” J. Maps, vol. 18, no. 1, pp. 53–60, 2022, doi: 10.1080/17445647.2022.2039310.

S. S. Wahla, J. H. Kazmi, and A. Tariq, “Mapping and monitoring of spatio-temporal land use and land cover changes and relationship with normalized satellite indices and driving factors,” Geol. Ecol. Landscapes, vol. 00, no. 00, pp. 1–17, 2023, doi: 10.1080/24749508.2023.2187567.

J. Moussa Kourouma et al., “Assessing the spatio-temporal variability of NDVI and VCI as indices of crops productivity in Ethiopia: a remote sensing approach,” Geomatics, Nat. Hazards Risk, vol. 12, no. 1, pp. 2880–2903, 2021, doi: 10.1080/19475705.2021.1976849.

Y. He, J. Chipman, N. Siegert, and J. S. Mankin, “Rapid Land-Cover and Land-Use Change in the Indo-Malaysian Region over the Last Thirty-Four Years Based on AVHRR NDVI Data,” Ann. Am. Assoc. Geogr., vol. 112, no. 8, pp. 2131–2151, 2022, doi: 10.1080/24694452.2022.2077168.

R. Yao, Y. Zhang, L. Wang, J. Li, and Q. Yang, “Reconstructed NDVI and EVI datasets in China (ReVIChina) generated by a spatial-interannual reconstruction method,” Int. J. Digit. Earth, vol. 16, no. 2, pp. 4749–4768, 2023, doi: 10.1080/17538947.2023.2283492.

Y. Meng, B. Hou, C. Ding, L. Huang, Y. Guo, and Z. Tang, “Spatiotemporal patterns of planted forests on the Loess Plateau between 1986 and 2021 based on Landsat NDVI time-series analysis,” GIScience Remote Sens., vol. 60, no. 1, 2023, doi: 10.1080/15481603.2023.2185980.

M. E. Suaza-Medina, J. Laguna, R. Béjar, F. J. Zarazaga-Soria, and J. Lacasta, “Evaluating the efficiency of NDVI and climatic data in maize harvest prediction using machine learning,” Int. J. Digit. Earth, vol. 17, no. 1, pp. 1–15, 2024, doi: 10.1080/17538947.2024.2359565.

P. Singh, A. Sarkar Chaudhuri, P. Verma, V. K. Singh, and S. R. Meena, “Earth observation data sets in monitoring of urbanization and urban heat island of Delhi, India,” Geomatics, Nat. Hazards Risk, vol. 13, no. 1, pp. 1762–1779, 2022, doi: 10.1080/19475705.2022.2097452.

E. Kamali Maskooni, H. Hashemi, R. Berndtsson, P. Daneshkar Arasteh, and M. Kazemi, “Impact of spatiotemporal land-use and land-cover changes on surface urban heat islands in a semiarid region using Landsat data,” Int. J. Digit. Earth, vol. 14, no. 2, pp. 250–270, 2021, doi: 10.1080/17538947.2020.1813210.

F. F. Şimşek and S. S. Durduran, “Land cover classification using Land Parcel Identification System (LPIS) data and open source Eo-Learn library,” Geocarto Int., vol. 0, no. 0, pp. 1–18, 2022, doi: 10.1080/10106049.2022.2146760.

F. Mirchooli, S. H. Sadeghi, and A. Khaledi Darvishan, “Spatiotemporal dynamic of environmental indices of watershed sustainability in connection with land-use change,” Ecosyst. Heal. Sustain., vol. 8, no. 1, 2022, doi: 10.1080/20964129.2021.2024454.

M. Rendana et al., “Effects of the built-up index and land surface temperature on the mangrove area change along the southern Sumatra coast,” Forest Sci. Technol., vol. 19, no. 3, pp. 179–189, 2023, doi: 10.1080/21580103.2023.2220576.

N. Farmonov et al., “Combining PlanetScope and Sentinel-2 images with environmental data for improved wheat yield estimation,” Int. J. Digit. Earth, vol. 16, no. 1, pp. 847–867, 2023, doi: 10.1080/17538947.2023.2186505.

C. Singha et al., “Total land suitability analysis for rice and potato crops through FuzzyAHP technique in West Bengal, India,” Cogent Food Agric., vol. 9, no. 1, 2023, doi: 10.1080/23311932.2023.2257975.

R. A. Persad, “Spatio-temporal analysis of mental illness and the impact of marginalization-based factors: a case study of Ontario, Canada,” Ann. GIS, vol. 26, no. 3, pp. 237–250, 2020, doi: 10.1080/19475683.2020.1791251.

G. Aredehey, A. Mezgebu, and A. Girma, “The effects of land use land cover change on hydrological flow in Giba catchment, Tigray, Ethiopia,” Cogent Environ. Sci., vol. 6, no. 1, 2020, doi: 10.1080/23311843.2020.1785780.

Y. Zhang et al., “Improving remote sensing estimation of Secchi disk depth for global lakes and reservoirs using machine learning methods,” GIScience Remote Sens., vol. 59, no. 1, pp. 1367–1383, 2022, doi: 10.1080/15481603.2022.2116102.

T. Tsheten, A. C. A. Clements, D. J. Gray, S. Wangchuk, and K. Wangdi, “Spatial and temporal patterns of dengue incidence in Bhutan: a Bayesian analysis,” Emerg. Microbes Infect., vol. 9, no. 1, pp. 1360–1371, 2020, doi: 10.1080/22221751.2020.1775497.

M. R. Kaloop, M. Iqbal, M. T. Elnabwy, E. K. Mustafa, and J. W. Hu, “A novel AI approach for modeling land surface temperature of Freetown, Sierra Leone, based on land-cover changes,” Int. J. Digit. Earth, vol. 15, no. 1, pp. 1236–1258, 2022, doi: 10.1080/17538947.2022.2099022.

H. M. Imran et al., “Land surface temperature and human thermal comfort responses to land use dynamics in Chittagong city of Bangladesh,” Geomatics, Nat. Hazards Risk, vol. 13, no. 1, pp. 2283–2312, 2022, doi: 10.1080/19475705.2022.2114384.

S. Guha and H. Govil, “A long-term monthly analytical study on the relationship of LST with normalized difference spectral indices,” Eur. J. Remote Sens., vol. 54, no. 1, pp. 487–511, 2021, doi: 10.1080/22797254.2021.1965496.

A. Dilawar et al., “Spatiotemporal shifts in thermal climate in responses to urban cover changes: a-case analysis of major cities in Punjab, Pakistan,” Geomatics, Nat. Hazards Risk, vol. 12, no. 1, pp. 763–793, 2021, doi: 10.1080/19475705.2021.1890235.

Z. Du et al., “Integrating remote sensing temporal trajectory and survey statistics to update land use/land cover maps,” Int. J. Digit. Earth, vol. 16, no. 2, pp. 4428–4445, 2023, doi: 10.1080/17538947.2023.2274422.

D. H. García, H. Rezapouraghdam, C. M. Hall, O. M. Karatepe, and S. N. Koupaei, “Spatio-temporal variability of the earth’s surface temperature and the changes in land user/land cover: implications for sustainable tourism development,” J. Policy Res. Tour. Leis. Events, pp. 1–28, 2023, doi: 10.1080/19407963.2023.2242362.

T. Maphanga, C. Shoko, M. Sibanda, K. H. Thamaga, and T. Dube, “Understanding the spatio-temporal distribution of bush encroachment in savannah rangelands, South Africa,” Geocarto Int., vol. 39, no. 1, p., 2024, doi: 10.1080/10106049.2024.2366515.

P. C. Mohanty, S. Shetty, R. S. Mahendra, R. K. Nayak, L. K. Sharma, and E. P. Rama Rao, “Spatio-temporal changes of mangrove cover and its impact on bio-carbon flux along the West Bengal coast, Northeast coast of India,” Eur. J. Remote Sens., vol. 54, no. 1, pp. 524–536, 2021, doi: 10.1080/22797254.2021.1977183.

T. Lazebnik, L. Shami, and S. Bunimovich-Mendrazitsky, “Spatio-Temporal influence of Non-Pharmaceutical interventions policies on pandemic dynamics and the economy: the case of COVID-19,” Econ. Res. Istraz. , vol. 35, no. 1, pp. 1833–1861, 2022, doi: 10.1080/1331677X.2021.1925573.

R. Niaz, M. M. A. Almazah, F. S. Al-Duais, N. Iqbal, D. M. Khan, and I. Hussain, “Spatiotemporal analysis of meteorological drought variability in a homogeneous region using standardized drought indices,” Geomatics, Nat. Hazards Risk, vol. 13, no. 1, pp. 1457–1481, 2022, doi: 10.1080/19475705.2022.2079429.

H. Abrha, S. Dodiomon, V. Ongoma, H. Hagos, and E. Birhane, “Spatio-temporal prediction of climate and wildfire in Hugumbrda Grat-Kahsu forest, Tigray: priority for early warning,” Geomatics, Nat. Hazards Risk, vol. 14, no. 1, p., 2023, doi: 10.1080/19475705.2023.2250517.

R. Heidarian Dehkordi, H. Pelgrum, and J. Meersmans, “High spatio-temporal monitoring of century-old biochar effects on evapotranspiration through the ETLook model: a case study with UAV and satellite image fusion based on additive wavelet transform (AWT),” GIScience Remote Sens., vol. 59, no. 1, pp. 111–141, 2022, doi: 10.1080/15481603.2021.2016262.

Y. Sun et al., “Spatio-temporal evolution of land subsidence and susceptibility zonation of associated ground fissures in the urban area of loess plateau: a case in Xianyang city, China,” Geomatics, Nat. Hazards Risk, vol. 15, no. 1, p., 2024, doi: 10.1080/19475705.2024.2341181.

F. Qian, Y. Chi, R. Lal, and K. Lorenz, “Spatio-temporal characteristics of cultivated land fragmentation in different landform areas with a case study in Northeast China,” Ecosyst. Heal. Sustain., vol. 6, no. 1, 2020, doi: 10.1080/20964129.2020.1800415.

K. Gupta, A. Saha, and B. Sen Gupta, “Spatio-temporal distribution of pollutant trace gases (CO, CH4, O3 and NO2) in India: an observational study,” Geol. Ecol. Landscapes, vol. 00, no. 00, pp. 1–21, 2022, doi: 10.1080/24749508.2022.2132706.

U. Bangura et al., “Spatio-temporal spread of Lassa virus and a new rodent host in the Mano River Union area, West Africa,” Emerg. Microbes Infect., vol. 13, no. 1, 2024, doi: 10.1080/22221751.2023.2290834.

K. Jitkajornwanich, N. Pant, M. Fouladgar, and R. Elmasri, “A survey on spatial, temporal, and spatio-temporal database research and an original example of relevant applications using sql ecosystem and deep learning,” J. Inf. Telecommun., vol. 4, no. 4, pp. 524–559, 2020, doi: 10.1080/24751839.2020.1774153.

X. Huang, L. Qiu, X. Wang, X. Wang, F. Guo, and T. Zhang, “Spatio-temporal characteristics of fertilizer utilization efficiency in China during 1999-2018: a biennial weight modified Russell model,” Cogent Food Agric., vol. 8, no. 1, 2022, doi: 10.1080/23311932.2022.2141794.

M. B. Moisa, B. B. Merga, K. T. Deribew, M. E. Feyissa, M. M. Gurmessa, and D. O. Gemeda, “Urban green space suitability analysis using geospatial techniques: a case study of Addis Ababa, Ethiopia,” Geocarto Int., vol. 38, no. 1, p., 2023, doi: 10.1080/10106049.2023.2213674.

M. H. Dangisso, D. G. Datiko, and B. Lindtjørn, “Identifying geographical heterogeneity of pulmonary tuberculosis in southern Ethiopia: a method to identify clustering for targeted interventions,” Glob. Health Action, vol. 13, no. 1, 2020, doi: 10.1080/16549716.2020.1785737.

O. Lock, T. Bednarz, and C. Pettit, “The visual analytics of big, open public transport data–a framework and pipeline for monitoring system performance in Greater Sydney,” Big Earth Data, vol. 5, no. 1, pp. 134–159, 2021, doi: 10.1080/20964471.2020.1758537.

W. J. Hernández, J. M. Morell, and R. A. Armstrong, “Using high-resolution satellite imagery to assess the impact of Sargassum inundation on coastal areas,” Remote Sens. Lett., vol. 13, no. 1, pp. 24–34, 2022, doi: 10.1080/2150704X.2021.1981558.

V. S. K. Vanama, Y. S. Rao, and C. M. Bhatt, “Rapid monitoring of cyclone induced flood through an automated approach using multi–temporal Earth Observation (EO) images in RSS CloudToolbox platform,” Eur. J. Remote Sens., vol. 54, no. 1, pp. 588–608, 2021, doi: 10.1080/22797254.2021.1983471.

B. Sun et al., “Integrating vegetation phenological characteristics and polarization features with object-oriented techniques for grassland type identification,” Geo-Spatial Inf. Sci., vol. 27, no. 3, pp. 794–810, 2024, doi: 10.1080/10095020.2023.2250378.

B. Maaiah, M. Al-Badarneh, and A. Al-Shorman, “Mapping potential nature based tourism in Jordan using AHP, GIS and remote sensing,” J. Ecotourism, vol. 22, no. 2, pp. 260–280, 2023, doi: 10.1080/14724049.2021.1968879.

A. Ghosh, U. Chatterjee, S. C. Pal, A. R. M. Towfiqul Islam, E. Alam, and M. K. Islam, “Flood hazard mapping using GIS-based statistical model in vulnerable riparian regions of sub-tropical environment,” Geocarto Int., vol. 38, no. 1, p., 2023, doi: 10.1080/10106049.2023.2285355.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Spatial Data Processing for Mangrove Ecotourism Development: Spatio-temporal Analysis through NDVI, NDBI, and SAVI Using Landsat 8/9 OLI

Dimensions Badge
Article History
Submitted: 2024-08-06
Published: 2024-08-09
Abstract View: 406 times
PDF Download: 203 times
Section
Articles