Clustering Analysis of Bus Fares Trans Metro Deli Medan Using Mean Shif Clustering Method


  • Rinanda Putri Rambe * Mail State Islamic University of North Sumatera, Medan, Indonesia
  • Ilka Zufria State Islamic University of North Sumatera, Medan, Indonesia
  • (*) Corresponding Author
Keywords: Classification; Mean-Shift Clustering; Cluster; Silhouette Score

Abstract

Medan City is the 3rd most populous city in Indonesia, according to data from the Central Statistics Agency, Medan has a population of 2.49 million in 2022, an increase from the previous 2.46 million in 2021. The increasing number of population inhabiting the city of Medan means that the need for transportation for the people of Medan is also increasing. Trans Metro Deli bus data can be grouped effectively using the mean shift algorithm based on several attributes, namely passenger category, payment method and fare. Each passenger group has different needs and ability to pay, which makes setting fair and efficient fares a challenge. Inappropriate pricing can lead to passenger dissatisfaction, reduce the number of public transportation users, and affect bus operators' revenue. Cluster technique is a well-known clustering technique, which aims to group data into clusters so that each cluster contains data that is as similar as possible. Mean shift belongs to the category of clustering algorithms with unsupervised learning that assigns data points to clusters iteratively by shifting the points towards the mode (mode is the highest density of data points in the region in the context of mean shift). Mean shift does not require determining the number of clusters in advance The attributes used in the clustering process, namely passenger category, payment method and fare can properly create a hyperplane between clusters, thus creating significant differences from each cluster, as evidenced by the silhouette score obtained by 0.64. By conducting this analysis, it is expected to find a more efficient and fair fare clustering pattern, and provide practical recommendations for management in setting fares that are more in line with passenger needs. In addition, this research also aims to evaluate the effectiveness of mean shift clustering in the context of transportation fare analysis.

Downloads

Download data is not yet available.

References

M. R. Pratama, “Tinjauan Lokasi Halte Bus Trans Metro Deli Di Koridor 5 Medan Lapangan Merdeka – Tembung Terhadap Naik Turun Penumpang Bus Trans Metro Deli,” 2021.

G. N. Aulia and E. Patriya, “IMPLEMENTASI LEXICON BASED DAN NAIVE BAYES PADA ANALISIS SENTIMEN PENGGUNA TWITTER TOPIK PEMILIHAN PRESIDEN 2019,” infokom, vol. 24, no. 2, pp. 140–153, 2019, doi: 10.35760/ik.2019.v24i2.2369.

M. Rifadh and R. S. M. Sihombing, “KAPASITAS DINAS PERHUBUNGAN KOTA MEDAN DALAM PENGENDALIAN SARANA DAN PRASARANA BUS TRANS METRO DELI DI KOTA MEDAN,” JSSR, vol. 6, no. 1, p. 174, Feb. 2023, doi: 10.54314/jssr.v6i1.1187.

M. Mustopa, I. Junaedi, and A. Z. Sianipar, “SISTEM INFORMASI PENJUALAN DAN PENGENDALIAN STOCK BARANG BANGUNAN PADA TOKO BANGUNAN DELIMA,” JMIJayakarta, vol. 1, no. 2, p. 105, Apr. 2021, doi: 10.52362/jmijayakarta.v1i2.447.

A. R. Harahap, “PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MEDAN AREA,” 2022.

S. I. Nurhafida and F. Sembiring, “ANALISIS TEXT CLUSTERING MASYARAKAT DI TWITER MENGENAI MCDONALD’SXBTS MENGGUNAKAN ORANGE DATA MINING,” 2021.

A. A. Arif, M. Firdaus, and Y. Maruhawa, “Comparison of Data Mining Methods for Predition of Rainfall with C4.5, Naïve Bayes, and KNN Algorithm,” 2022.

M. Rosadi, D. Aulia Nurhasanah, and M. Siddik Hasibuan, “Clustering Panjang Ruas Jalan di BBPJN Sumut Menggunakan Algoritma K-Means,” CoSIE, pp. 29–38, Jan. 2023, doi: 10.55537/cosie.v2i1.567.

R. Kurniawan R and I. Zufria, “Penerapan Text Mining Pada Sistem Penyeleksian Judul Skripsi Menggunakan Algoritma Latent Dirichlet Allocation(LDA),” ijcs, vol. 11, no. 3, Dec. 2022, doi: 10.33022/ijcs.v11i3.3120.

Vrantika Br Samosir, Agung Mulyo Widodo, Nizirwan Anwar, Binastya Anggara Sekti, and Nixon Erzed, “Identifikasi Outlier Menggunakan Teknik Data Mining Clustering Untuk Analisis Data Tracer Study Pada Fakultas Ilmu Komputer Universitas Esa Unggul,” ikraith-informatika, vol. 8, no. 1, pp. 162–174, Mar. 2024, doi: 10.37817/ikraith-informatika.v8i1.3211.

R. Rizuan, E. Haerani, J. Jasril, and L. Oktavia, “Penerapan Algoritma Mean-Shift Pada Clustering Penerimaan Bantuan Pangan Non Tunai,” JoSYC, vol. 4, no. 4, pp. 1019–1027, Aug. 2023, doi: 10.47065/josyc.v4i4.3876.

M. W. Talakua, Z. A. Leleury, and A. W. Taluta, “ANALISIS CLUSTER DENGAN MENGGUNAKAN METODE K-MEANS UNTUK PENGELOMPOKKAN KABUPATEN/KOTA DI PROVINSI MALUKU BERDASARKAN INDIKATOR INDEKS PEMBANGUNAN MANUSIA TAHUN 2014,” BAREKENG: J. Mat. & Ter., vol. 11, no. 2, pp. 119–128, Dec. 2017, doi: 10.30598/barekengvol11iss2pp119-128.

R. Dinata Kesuma and N. Hasdina, Machine Learning. Lhokseumawe: UNIMAL Press, 2022.

D. Apriyanty, A. M. Putra, and R. A. Caesar, “Implementasi Mean Shift Clustering Dalam Mengelompokkan Pelanggan Retribusi Alat Pemadam Kebakaran Pada Dinas Pemadam Kebakaran dan Penanggulangan Bencana Kota Palembang,” Jurnal Sistem Informasi, vol. 4, no. 1, 2023.

S. Wirma, “Data Mining Dengan Metode Naïves Bayes Classifer dalam Memprediksi Tingkat Kepuasan Pelayanan Dokumen Kependudukan,” INFEB, pp. 156–160, Sep. 2022, doi: 10.37034/infeb.v4i3.155.

I. S. Tinendung and I. Zufria, “Pengelompokan Status Stunting Pada Anak Menggunakan Metode K-Means Clustering,” mib, vol. 7, no. 4, p. 2014, Oct. 2023, doi: 10.30865/mib.v7i4.6908.

R. Bahtiar, “Implementasi Data Mining Untuk Prediksi Penjualan Kusen Terlaris Menggunakan Metode K-Nearest Neighbor,” 2023.

A. Trisnawati, D. Surani, and A. Fidriyanto, “ANALYSIS OF MATERIAL UNDERSTANDING USING GOOGLE COLABORATORY IN CLASS X INFORMATICS SUBJECTS AT SMAN 5 SERANG,” vol. 8, 2024.

A. Ma’rif, Buku Ajar Pemrograman Lanjut Bahasa Pemrograman Python. Yogyakarta: Universitas Ahmad Dahlan, 2020.

A. I. Putri and M. Furqan, “Application of Data Mining to Predict Birth Rates in Medan City Using the K-Nearest Neighbor Method,” Journal of Computer Science, vol. 5, no. 1, 2024

M. Ikhsan and R. Kurniawan, “Penerapan Text Mining pada Sistem Rekomendasi Pembimbing Skripsi Mahasiswa Menggunakan Algoritma Naïve Bayes Classifier,” Indonesian Journal of Computer Science, vol. 12, no. 6, 2023.

G. I. E. Soen, M. Marlina, and R. Renny, “Implementasi Cloud Computing dengan Google Colaboratory pada Aplikasi Pengolah Data Zoom Participants,” jitu, vol. 6, no. 1, pp. 24–30, Jun. 2022, doi: 10.36596/jitu.v6i1.781.

A. Yuniarti, A. Yasin, and A. N. Yohannes, “Efektifitas Algoritma Data Mining dalam Menentukan Pendonor Darah Potensial,” Syntax : Jurnal Informatika, vol. 11, no. 01, pp. 12–22, 2022.

R. Kurniawan, A. Halim, and H. Melisa, “Prediksi Hasil Panen Pertanian Salak di Daerah Tapanuli Selatan Menggunakan Algoritma SVM (Support Vector Machine)” 2023

M. A. Ramdhani, “Gunung Djati Converence Series,” vol. 3, 2021.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Clustering Analysis of Bus Fares Trans Metro Deli Medan Using Mean Shif Clustering Method

Dimensions Badge
Article History
Submitted: 2024-08-03
Published: 2024-08-10
Abstract View: 341 times
PDF Download: 329 times
Section
Articles