Pengenalan Pola untuk Identifikasi Jenis Kain Tenun Sibolga Menggunakan Metode Principal Component Analysis dan K-Nearest Neighbours


  • Dinara Sarvina Piliang * Mail Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • Sriani Sriani Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • (*) Corresponding Author
Keywords: Sibolga Woven Cloth; Classification; PCA; KNN; Pattern

Abstract

Sibolga woven fabric is one of Indonesia's traditional fabrics that has high artistic and cultural value. Sibolga woven fabric motifs are usually inspired by nature, such as flora, fauna, and local culture. Sibolga woven fabric and is famous for its unique and diverse motifs. Sibolga woven fabric motifs are usually inspired by nature, such as flora, fauna, and local culture.  Manually classifying the types of Sibolga woven fabrics is a time-consuming process and requires special expertise. This causes the complexity of motifs and color variations found in Sibolga woven fabrics. Therefore, a system is needed that can classify the types of Sibolga woven fabrics automatically and accurately. The method used in this study is the feature extraction method, which is to extract new features from the initial data set. One of the feature extraction techniques that can be used is Principal Component Analysis (PCA). The use of PCA can be used to reduce the lower dimensions of data with very little risk of information loss. The study also uses KNN because this algorithm is used effectively to classify fabrics based on these key features, thereby reducing computational complexity and improving accuracy. The results of the classification of sibolga woven fabrics using the K-NN algorithm by utilizing the feature extraction process using PCA obtained an accuracy of 72%. It can be concluded that the classification of sibolga woven fabrics using an algorithm using the K-Nearest Neighbours (K-NN) algorithm can be done by extracting features using the PCA method (Pricipal Component Analysis).

Downloads

Download data is not yet available.

References

R. I. Borman, I. Ahmad, and Y. Rahmanto, “Klasifikasi Citra Tanaman Perdu Liar Berkhasiat Obat Menggunakan Jaringan Syaraf Tiruan Radial Basis Function,” Bull. Informatics …, 2022, [Online]. Available: https://ejurnal.pdsi.or.id/index.php/bids/article/view/3

M. Fansyuri and D. Yunita, “Implementasi K-Nearest Neighbor Untuk Klasifikasi Jenis Kelamin Berdasarkan Analisis Citra Wajah,” KLIK Kaji. Ilm. Inform. dan Komput., 2023, [Online]. Available: http://www.djournals.com/klik/article/view/827

F. Fatmayati, D. Nurnaningsih, N. Nugroho, “Pengembangan Sistem Pakar Menggunakan Pendekatan Dempster-Shafer Theory Pada Diagnosis Gangguan Makan Pada Anak,” … Tek. Inform. dan …, 2024, [Online]. Available: http://www.djournals.com/resolusi/article/view/1884

Q. N. Azizah, “Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network AlexNet,” sudo Jurnal Teknik Informatika. jurnal.ilmubersama.com, 2023. [Online]. Available: https://jurnal.ilmubersama.com/index.php/sudo/article/download/227/148

I. S. Dewi And S. I. Akutansi, “Mempelajari Berbagai Jenis Sistem Informasi Akuntansi : Memilih Solusi Tepat Untuk,” Vol. 4, No. 1, Pp. 1–26, 2024.

D. Fadhlan, “Optimalkan Kampanye Digital Anda Dengan Analisis Visual,” Jurnal Teknologi Pintar. Teknologipintar.Org, 2024. [Online]. Available: Http://Teknologipintar.Org/Index.Php/Teknologipintar/Article/View/653

A. Hasan, “Integrasi Sistem Informasi Akuntansi Dan Teknologi Terkini Untuk Efisiensi Operasional,” Jurnal Ilmu Data. Ilmudata.Org, 2024. [Online]. Available: Http://Ilmudata.Org/Index.Php/Ilmudata/Article/View/340

D. A. N. Alat, “Visualisasi Data Untuk Pemodelan Prediktif : Metode,” Vol. 4, No. 5, Pp. 1–19, 2024.

A. Mahendra, “Visualisasi Data Untuk Pemantauan Kinerja Proyek: Teknik Dan Tools,” Jurnal Teknologi Pintar. Teknologipintar.Org, 2024. [Online]. Available: http://teknologipintar.org/index.php/teknologipintar/article/view/651

D. Pratiwi, “Strategi Pengelolaan Keuangan Yang Lebih Efektif Melalui Sistem Informasi Akuntansi Berbasis Teknologi,” Jurnal Ilmu Data. ilmudata.org, 2024. [Online]. Available: http://ilmudata.org/index.php/ilmudata/article/view/381

Sriani, Supriyandi, M. Furqan, and W. Fadilla Rischa, “Pengenalan Pola Penyakit Daun Jambu Air Menggunakan Metode PCA dan KNN,” J. Jar. Sist. Inf. Robot., vol. 7, no. 2, pp. 158–163, 2023, [Online]. Available: http://ojsamik.amikmitragama.ac.id

I. P. Sari, F. Ramadhani, A. Satria, and D. Apdilah, “Implementasi Pengolahan Citra Digital dalam Pengenalan Wajah menggunakan Algoritma PCA dan Viola Jones,” Hello World J. Ilmu Komput., vol. 2, no. 3, pp. 146–157, 2023, doi: 10.56211/helloworld.v2i3.346.

A. Putra, “Visualisasi Data Untuk Pengambilan Keputusan: Metode Dan Strategi,” Teknologipintar.org, vol. 4, no. 5, pp. 1–22, 2024.

J. Supriyanto, “MEMBANGUN SISTEM INFORMASI AKUNTANSI YANG EFEKTIF: PANDUAN LENGKAP UNTUK IMPLEMENTASI YANG SUKSES,” Jurnal Ilmu Data. ilmudata.org, 2024. [Online]. Available: http://ilmudata.org/index.php/ilmudata/article/view/346

N. Susanti, “RANCANG BANGUN SISTEM OTOMASI PENJADWALAN PRODUKSI MENGGUNAKAN ALGORITMA GENETIKA,” Jurnal Ilmu Data. ilmudata.org, 2024. [Online]. Available: http://ilmudata.org/index.php/ilmudata/article/view/394

A. Syahputra, “Penggunaan Sistem Informasi Akuntansi (Sia) Untuk Pemantauan Dan Pengendalian Keuangan Yang Lebih Efektif,” Ilmudata.org, vol. 4, no. 1, pp. 1–29, 2024.

P. N. Andono and E. H. Rachmawanto, “Evaluasi Ekstraksi Fitur GLCM dan LBP Menggunakan Multikernel SVM untuk Klasifikasi Batik,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 1–9, 2021, doi: 10.29207/resti.v5i1.2615.

A. Septiarini, Rizqi Saputra, Andi Tejawati, and Masna Wati, “Deteksi Sarung Samarinda Menggunakan Metode Naive Bayes Berbasis Pengolahan Citra,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 5, pp. 927–935, 2021, doi: 10.29207/resti.v5i5.3435.

A. Z. Putra, A. M. Husein, and A. M. Simarmata, “Klasifikasi Buah Guava Menggunakan Computer Vision,” vol. 3, no. 2, pp. 104–109, 2024.

F. R. Malau and D. I. Mulyana, “Classification of Edelweiss Flowers Using Data Augmentation and Linear Discriminant Analysis Methods,” J. Appl. Eng. Technol. Sci., vol. 4, no. 1, pp. 139–148, 2022, doi: 10.37385/jaets.v4i1.960.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Pengenalan Pola untuk Identifikasi Jenis Kain Tenun Sibolga Menggunakan Metode Principal Component Analysis dan K-Nearest Neighbours

Dimensions Badge
Article History
Submitted: 2024-08-02
Published: 2024-08-09
Abstract View: 520 times
PDF Download: 426 times
Section
Articles