Penerapan Algoritma Support Vector Machine Untuk Mendeteksi Autisme
Abstract
Autism is a type of developmental disorder that can cause a neurological condition to disrupt brain function and impact a person's growth process, communication skills and social interaction abilities. In general, autism spectrum disorders can be detected in babies as early as 6 months. Things that interfere with a child's development occur because the structure of brain function is disturbed. This widespread disability is described as a spectrum disorder due to the considerable variation in how an individual manifests symptoms and their severity. By carrying out this detection, it can make it easier for parents to know whether their child has autism or not so they know what action to take. This research was conducted using a quantitative research methodology, where the research approach focuses on collecting and analyzing data that can be measured in numerical form using statistical techniques to obtain numbers and generalize. This approach involves the relationship between phenomena and cause and effect using a larger sample. After the previous stages are completed, then continue testing the prediction results using testing and accuracy data to obtain classification results. From the classification results above, the resulting classification value reaches 100% using test data and using accuracy values. Support Vector Machine (SVM) algorithm ) with a linear kernel has been applied to a dataset of autism in children. This model succeeded in separating classes well, showing that SVM is an effective algorithm for this classification problem.
Downloads
References
WHO, “autisme,” WHO. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders, diakses 20 Mei 2024
N. Ratama and Munawaroh, “Implementasi Metode Fuzzy Tsukamoto Untuk Deteksi Dini Autisme Pada Balita Berbasis Android,” J. Inform. Rekayasa Elektron., vol. 3, no. 2, 2020.
Y. N. Lin, L. S. Iao, Y. H. Lee, and C. C. Wu, “Parenting Stress and Child Behavior Problems in Young Children with Autism Spectrum Disorder: Transactional Relations Across Time,” J. Autism Dev. Disord., vol. 51, no. 7, pp. 2381–2391, 2021, doi: 10.1007/s10803-020-04720-z.
H. Sulistyowati, D. Mayasari, and S. D. Hastining, “Pemerolehan Kosa Kata Anak Autism Spectrum Disorder (ASD),” J. Obs. J. Pendidik. Anak Usia Dini, vol. 6, no. 4, pp. 3091–3099, 2022, doi: 10.31004/obsesi.v6i4.2374.
T. Ghazi Pratama, A. Ridwan, and A. Prihandono, “Deteksi Dini Asd (Autism Spectrum Disorder) Menggunakan Machine Learning,” J. Ilmu Komput. dan Matemtika, vol. 4, no. 2, pp. 44–51, 2023.
J. Jennings Dunlap, “Autism Spectrum Disorder Screening and Early Action,” J. Nurse Pract., vol. 15, no. 7, pp. 496–501, 2019, doi: 10.1016/j.nurpra.2019.04.001.
A. Parmeggiani, A. Corinaldesi, and A. Posar, “Early features of autism spectrum disorder: A cross-sectional study,” Ital. J. Pediatr., vol. 45, no. 1, pp. 1–8, 2019, doi: 10.1186/s13052-019-0733-8.
Fadlan Isa Damanik and Said Iskandar Al-Idrus, “Diagnosa Autisme Pada Anak Dengan Sistem Pakar Menggunakan Metode Forward Chaining,” J. Student Res., vol. 1, no. 2, pp. 448–460, 2023, doi: 10.55606/jsr.v1i2.1063.
S. B. Bayu Sugara, Dedi Adidarma, “Perbandingan Akurasi Algoritma C4.5 dan Naïve Bayes untuk Deteksi Dini Gangguan Autisme pada Anak,” J. IKRA-ITH Inform., vol. 3, no. 1, pp. 119–128, 2019.
G. L. Kandouw, A. Dundu, and C. Elim, “Deteksi Dini Anak Gangguan Spektrum Autisme dan Interaksinya dengan Orang Tua dan Saudara Kandung,” e-CliniC, vol. 6, no. 1, 2018, doi: 10.35790/ecl.6.1.2018.19504.
A. N. Katilik and J. A. Djie, “Penerapan Pendekatan Orff-Schulwerk untuk Meningkatkan Hasil Belajar Siswa dengan Autism Spectrum Disorder ( ASD ) dalam Pembelajaran Instrumen Ritmis Sederhana,” Seni Musik, vol. 12, no. 1, pp. 91–109, 2022.
E. D. Isnannisa and L. M. Boediman, “Dir/floortime to increase communication between a child with autism and a mother with different sensory profile,” J. Psikol. Sains dan Profesi, vol. 3, no. 3, pp. 177–187, 2019.
B. Sugara and A. Subekti, “Penerapan Support Vector Machine (Svm) Pada Small Dataset Untuk Deteksi Dini Gangguan Autisme,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 177–182, 2019, doi: 10.33480/pilar.v15i2.649.
L. Alaika, “Optimization of Accuracy to Autism Spectrum Disorder Identification for Children Using Support Vector Machine and Correlation-based Feature Selection,” J. Adv. Inf. Syst. Technol., vol. 4, no. 1, pp. 1–12, 2022
E. S. Dewi, “Klasifikasi Autism Spectrum Disorder Menggunakan Algoritma Naive Bayes,” MATHunesa J. Ilm. Mat., vol. 9, no. 1, pp. 27–35, 2021, doi: 10.26740/mathunesa.v9n1.p27-35.
R. Supriyadi, N. Maulidah, A. Fauzi, H. Nalatissifa, and S. Diantika, “Penerapan Algoritma Naive Bayes Dan Support Vector Machine Dalam Memprediksi Autisme,” J. Swabumi, vol. 10, no. 1, p. 2022, 2022
D. Agustriawan, “Penerapan Pendekatan Machine Learning Pada Pengembangan Basis Data Herbal Sebagai Sumber Informasi Kandidat Obat Kanker,” J. Teknol. Ind. Pertan., vol. 29, no. 2, pp. 175–182, 2019, doi: 10.24961/j.tek.ind.pert.2019.29.2.175.
D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.
R. N. Yusra, O. S. Sitompul, and Sawaluddin, “Kombinasi K-Nearest Neighbor (KNN) dan Relief-F Untuk Meningkatkan Akurasi Pada Klasifikasi Data,” InfoTekJar J. Nas. Inform. dan Teknol. Jar., vol. 1, pp. 0–5, 2021.
N. Arifin, U. Enri, and N. Sulistiyowati, “Penerapan Algoritma Support Vector Machine (SVM) dengan TF-IDF N-Gram untuk Text Classification,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 6, no. 2, p. 129, 2021, doi: 10.30998/string.v6i2.10133.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma Support Vector Machine Untuk Mendeteksi Autisme
Pages: 786-795
Copyright (c) 2024 Miftahul Khoiriah, Rakhmat Kurniawan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















