Penerapan Algoritma Support Vector Machine Untuk Mendeteksi Autisme


  • Miftahul Khoiriah * Mail Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • Rakhmat Kurniawan Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • (*) Corresponding Author
Keywords: Support Vector Machine; Autisme; Machine Learning; ASD; Phyton

Abstract

Autism is a type of developmental disorder that can cause a neurological condition to disrupt brain function and impact a person's growth process, communication skills and social interaction abilities. In general, autism spectrum disorders can be detected in babies as early as 6 months. Things that interfere with a child's development occur because the structure of brain function is disturbed.  This widespread disability is described as a spectrum disorder due to the considerable variation in how an individual manifests symptoms and their severity. By carrying out this detection, it can make it easier for parents to know whether their child has autism or not so they know what action to take. This research was conducted using a quantitative research methodology, where the research approach focuses on collecting and analyzing data that can be measured in numerical form using statistical techniques to obtain numbers and generalize. This approach involves the relationship between phenomena and cause and effect using a larger sample. After the previous stages are completed, then continue testing the prediction results using testing and accuracy data to obtain classification results. From the classification results above, the resulting classification value reaches 100% using test data and using accuracy values. Support Vector Machine (SVM) algorithm ) with a linear kernel has been applied to a dataset of autism in children. This model succeeded in separating classes well, showing that SVM is an effective algorithm for this classification problem.

Downloads

Download data is not yet available.

References

WHO, “autisme,” WHO. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders, diakses 20 Mei 2024

N. Ratama and Munawaroh, “Implementasi Metode Fuzzy Tsukamoto Untuk Deteksi Dini Autisme Pada Balita Berbasis Android,” J. Inform. Rekayasa Elektron., vol. 3, no. 2, 2020.

Y. N. Lin, L. S. Iao, Y. H. Lee, and C. C. Wu, “Parenting Stress and Child Behavior Problems in Young Children with Autism Spectrum Disorder: Transactional Relations Across Time,” J. Autism Dev. Disord., vol. 51, no. 7, pp. 2381–2391, 2021, doi: 10.1007/s10803-020-04720-z.

H. Sulistyowati, D. Mayasari, and S. D. Hastining, “Pemerolehan Kosa Kata Anak Autism Spectrum Disorder (ASD),” J. Obs. J. Pendidik. Anak Usia Dini, vol. 6, no. 4, pp. 3091–3099, 2022, doi: 10.31004/obsesi.v6i4.2374.

T. Ghazi Pratama, A. Ridwan, and A. Prihandono, “Deteksi Dini Asd (Autism Spectrum Disorder) Menggunakan Machine Learning,” J. Ilmu Komput. dan Matemtika, vol. 4, no. 2, pp. 44–51, 2023.

J. Jennings Dunlap, “Autism Spectrum Disorder Screening and Early Action,” J. Nurse Pract., vol. 15, no. 7, pp. 496–501, 2019, doi: 10.1016/j.nurpra.2019.04.001.

A. Parmeggiani, A. Corinaldesi, and A. Posar, “Early features of autism spectrum disorder: A cross-sectional study,” Ital. J. Pediatr., vol. 45, no. 1, pp. 1–8, 2019, doi: 10.1186/s13052-019-0733-8.

Fadlan Isa Damanik and Said Iskandar Al-Idrus, “Diagnosa Autisme Pada Anak Dengan Sistem Pakar Menggunakan Metode Forward Chaining,” J. Student Res., vol. 1, no. 2, pp. 448–460, 2023, doi: 10.55606/jsr.v1i2.1063.

S. B. Bayu Sugara, Dedi Adidarma, “Perbandingan Akurasi Algoritma C4.5 dan Naïve Bayes untuk Deteksi Dini Gangguan Autisme pada Anak,” J. IKRA-ITH Inform., vol. 3, no. 1, pp. 119–128, 2019.

G. L. Kandouw, A. Dundu, and C. Elim, “Deteksi Dini Anak Gangguan Spektrum Autisme dan Interaksinya dengan Orang Tua dan Saudara Kandung,” e-CliniC, vol. 6, no. 1, 2018, doi: 10.35790/ecl.6.1.2018.19504.

A. N. Katilik and J. A. Djie, “Penerapan Pendekatan Orff-Schulwerk untuk Meningkatkan Hasil Belajar Siswa dengan Autism Spectrum Disorder ( ASD ) dalam Pembelajaran Instrumen Ritmis Sederhana,” Seni Musik, vol. 12, no. 1, pp. 91–109, 2022.

E. D. Isnannisa and L. M. Boediman, “Dir/floortime to increase communication between a child with autism and a mother with different sensory profile,” J. Psikol. Sains dan Profesi, vol. 3, no. 3, pp. 177–187, 2019.

B. Sugara and A. Subekti, “Penerapan Support Vector Machine (Svm) Pada Small Dataset Untuk Deteksi Dini Gangguan Autisme,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 177–182, 2019, doi: 10.33480/pilar.v15i2.649.

L. Alaika, “Optimization of Accuracy to Autism Spectrum Disorder Identification for Children Using Support Vector Machine and Correlation-based Feature Selection,” J. Adv. Inf. Syst. Technol., vol. 4, no. 1, pp. 1–12, 2022

E. S. Dewi, “Klasifikasi Autism Spectrum Disorder Menggunakan Algoritma Naive Bayes,” MATHunesa J. Ilm. Mat., vol. 9, no. 1, pp. 27–35, 2021, doi: 10.26740/mathunesa.v9n1.p27-35.

R. Supriyadi, N. Maulidah, A. Fauzi, H. Nalatissifa, and S. Diantika, “Penerapan Algoritma Naive Bayes Dan Support Vector Machine Dalam Memprediksi Autisme,” J. Swabumi, vol. 10, no. 1, p. 2022, 2022

D. Agustriawan, “Penerapan Pendekatan Machine Learning Pada Pengembangan Basis Data Herbal Sebagai Sumber Informasi Kandidat Obat Kanker,” J. Teknol. Ind. Pertan., vol. 29, no. 2, pp. 175–182, 2019, doi: 10.24961/j.tek.ind.pert.2019.29.2.175.

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.

R. N. Yusra, O. S. Sitompul, and Sawaluddin, “Kombinasi K-Nearest Neighbor (KNN) dan Relief-F Untuk Meningkatkan Akurasi Pada Klasifikasi Data,” InfoTekJar J. Nas. Inform. dan Teknol. Jar., vol. 1, pp. 0–5, 2021.

N. Arifin, U. Enri, and N. Sulistiyowati, “Penerapan Algoritma Support Vector Machine (SVM) dengan TF-IDF N-Gram untuk Text Classification,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 6, no. 2, p. 129, 2021, doi: 10.30998/string.v6i2.10133.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma Support Vector Machine Untuk Mendeteksi Autisme

Dimensions Badge
Article History
Submitted: 2024-07-26
Published: 2024-08-09
Abstract View: 701 times
PDF Download: 452 times
Section
Articles