Perbandingan Support Vector Machine dan Naïve Bayes Terkait Kepuasan Pengguna Bus Listrik Kota Medan


  • Zery Mesanda * Mail Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • Muhammad Ikhsan Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • (*) Corresponding Author
Keywords: Electric Bus; Text Mining; Support Vector Machine; Naïve Bayes

Abstract

The city government has introduced an initiative to use electric buses as a cleaner and more sustainable alternative. The success of a public transportation system is not only determined by the availability of fleet and infrastructure, but also by the level of user satisfaction. User satisfaction is an important indicator that reflects the extent to which the service meets users' expectations and needs. Therefore, an in-depth understanding of the factors that influence user satisfaction, as well as the ability to predict and manage them, is key in improving the quality of public transportation services, including usage. In an effort to understand and improve trolleybus user satisfaction in Medan City, an adequate predictive analysis approach is required. By using methods such as Support Vector Machine (SVM) and Naïve Bayes, we can develop predictive models that can identify patterns and trends in user data, thus enabling relevant parties to take appropriate actions to improve services. In this context, the comparison between SVM and Naïve Bayes methods will provide valuable insights into the effectiveness of each method in predicting the satisfaction of electric bus users in Medan City. Based on the comparison results, the Naive Bayes algorithm shows slightly better performance compared to the Support Vector Machine in this sentiment analysis. The accuracy value generated by applying the Naive Bayes method is 58%, while applying the Support Vector Machine method is 57%.  Nonetheless, both algorithms provide valuable insights into the sentiment of Medan people towards Electric Buses.

Downloads

Download data is not yet available.

References

M. R. Pratama, “Tinjauan Lokasi Halte Bus Trans Metro Deli Di Koridor 5 Medan Lapangan Merdeka – Tembung Terhadap Naik Turun Penumpang Bus Trans Metro Deli,” vol. 1, 2021.

I. W. A. Agustin, V. Gloria, and I. R. D. Ari, “Prioritas Peningkatan Kinerja Bus Listrik Metrotrans Rute 7A Kampung Rambutan – Lebak Bulus Jakarta,” STTI, vol. 1, no. 1, pp. 1–17, May 2024, doi: 10.47134/stti.v1i1.2418.

A. Novantirani, M. Sabariah Kania, and V. Effendi, “Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine,” e-Proceeding of Engineering, vol. 2, 2018.

M. Rifadh and R. S. M. Sihombing, “KAPASITAS DINAS PERHUBUNGAN KOTA MEDAN DALAM PENGENDALIAN SARANA DAN PRASARANA BUS TRANS METRO DELI DI KOTA MEDAN,” JSSR, vol. 6, no. 1, p. 174, Feb. 2023, doi: 10.54314/jssr.v6i1.1187.

M. Furqan, M. Ikhsan, and R. Aini, “Algoritma Support Vector Machine Untuk Analisis Sentimen Masyarakat Indonesia Terhadap Pandemi Virus Corona Di Media Sosial,” vol. 4, no. 4, 2023.

A. H. Hasugian, I. Rusydi, and M. Ramadhani, “Penerapan Algoritma Naive Bayes Classifier Untuk Mengukur Tingkat Kepuasan Pasien,” vol. 6, 2023.

A. A. Arif, M. Firdaus, and Y. Maruhawa, “Comparison of Data Mining Methods for Predition of Rainfall with C4.5, Naïve Bayes, and KNN Algorithm,” 2022.

D. S. O. Panggabean, E. Buulolo, and N. Silalahi, “Penerapan Data Mining Untuk Memprediksi Pemesanan Bibit Pohon Dengan Regresi Linear Berganda,” Jur. Ris. Kom., vol. 7, no. 1, p. 56, Feb. 2020, doi: 10.30865/jurikom.v7i1.1947.

R. Bahtiar, “Implementasi Data Mining Untuk Prediksi Penjualan Kusen Terlaris Menggunakan Metode K-Nearest Neighbor,” 2023.

A. Firdaus and W. I. Firdaus, “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan),” vol. 13, no. 1, 2021.

A. H. Lubis, L. P. A. Lubis, and Sriani, “Sentiment analysis on twitter about the death penalty using the support vector machine method,” TEKNOSAINS: Jurnal Sains, Teknologi dan Informatika, vol. 11, no. 2, pp. 312–321, 2024, doi: 10.37373.

P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” JTIIK, vol. 8, no. 1, p. 147, Feb. 2021, doi: 10.25126/jtiik.0813944.

S. Rahayu and J. J. Purnama, “KLASIFIKASI KONSUMSI ENERGI INDUSTRI BAJA MENGGUNAKAN TEKNIK DATA MINING,” JTI, vol. 16, no. 2, p. 395, Jul. 2022, doi: 10.33365/jti.v16i2.1984.

R. Husna El, R. Wasono, and M. Al Haris, “Analisis Sentimen Pada Twitter Mengenai Netflix Diblokir Telkom Menggunakan Metode Support Vector Machine,” Seminar Nasional Variansi, pp. 214–222, 2020.

S. Hilda Kusumahadi, H. Junaedi, and J. Santoso, “Klasifikasi Helpdesk Menggunakan Metode Support Vector Machine,” jpit, vol. 4, no. 1, pp. 54–60, Jan. 2019, doi: 10.30591/jpit.v4i1.1125.

A. M. Zaki, M. S. Asih, and K. Chiuloto, “SISTEM PENDUKUNG KEPUTUSAN UNTUK PENERIMAAN TENAGA KERJA MENGGUNAKAN METODE NAÏVE BAYES STUDI KASUS PT. ALFATHI BERKAH MULIA,” 2020.

S. D. Pramukti, A. Nugroho, and A. S. Sunge, “Analisis Sentimen Masyarakat Dengan Metode Naïve Bayes dan Particle Swarm Optimization,” tc, vol. 21, no. 1, pp. 61–74, Feb. 2022, doi: 10.33633/tc.v21i1.5332.

A. Guswandri and L. Andraini, “Menerapkan Analisis Sentimen Metode Naïve Bayes dan svm,” vol. 2, 2021.

Suparyanto, “Klasifikasi Kepuasan Layanan Akademik Di STMIK El Rahma Menggunakan Metode Algoritma Naive Bayes,” FAHMA, vol. 20, no. 2, pp. 100–111, May 2022, doi: 10.61805/fahma.v20i2.37.

A. Nugroho and Y. Religia, “Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging,” RESTI, vol. 5, no. 3, pp. 504–510, Jun. 2021, doi: 10.29207/resti.v5i3.3067.

Friska Aditia Indriyani, Ahmad Fauzi, and Sutan Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine,” tekno, vol. 10, no. 2, pp. 176–184, Jul. 2023, doi: 10.37373/tekno.v10i2.419.

H. Tuhuteru, “Analisis Sentimen Masyarakat Terhadap Pembatasan Sosial Berksala Besar Menggunakan Algoritma Support Vector Machine,” 2020

T. Hutapea Ediyantama and K. Dewi, “Penerapan Metode Support Vector Machine untuk Sistem Tanya Jawab Pada Kasus Front Office,” UNIKOM Press, 2022.

M. Ikhsan and R. Kurniawan, “Penerapan Text Mining pada Sistem Rekomendasi Pembimbing Skripsi Mahasiswa Menggunakan Algoritma Naïve Bayes Classifier,” Indonesian Journal of Computer Science, vol. 12, no. 6, 2023.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Support Vector Machine dan Naïve Bayes Terkait Kepuasan Pengguna Bus Listrik Kota Medan

Dimensions Badge
Article History
Submitted: 2024-07-13
Published: 2024-08-12
Abstract View: 614 times
PDF Download: 496 times
Section
Articles