Deteksi Outlier Hasil Clustering Algoritma K-Medoids Menggunakan Metode Boxplot Pada Data KIP Kuliah


  • Elsya Sabrina Asmita Simorangkir * Mail Universitas Pembangunan Panca Budi, Medan, Indonesia
  • Andysah Putera Utama Siahaan Universitas Pembangunan Panca Budi, Medan, Indonesia
  • Leni Marlina Universitas Pembangunan Panca Budi, Medan, Indonesia
  • Darmeli Nasution Universitas Pembangunan Panca Budi, Medan, Indonesia
  • Zulham Sitorus Universitas Pembangunan Panca Budi, Medan, Indonesia
  • (*) Corresponding Author
Keywords: KIP Kuliah; Outlier; K-Medoids; Box Plot

Abstract

In the process of forming clusters with the K-Medoids algorithm, cluster result anomalies often occur, such as outliers. This value appears as a revelation in existing data patterns. Outliers occur due to measurement errors, rare events, or due to other unexpected factors. In this research, the dataset used is data on prospective KIP recipient students at Budi Darma University, where there is a high level of interest in KIP Kuliah while the quota is limited, which means that KIP Kuliah administrators sometimes have difficulty determining which students are eligible to receive KIP Kuliah. For this reason, the K-Medoids clustering technique was used to cluster data on 54 prospective students who were eligible to receive KIP Kuliah Merdeka and those who were not eligible. From the cluster results, outlier detection was carried out using the box plot method with the aim of finding out whether each cluster member was actually in the appropriate cluster or not. The result is that the data cluster is divided into 2 (K-2). In the max min centroid selection, cluster I consists of 52 members and cluster II consists of 2 members, where the outlier data consists of 3 data, while in random centroid selection (python), cluster I consists of 36 members and cluster II 18 members with data The outlier consists of 4 members. The accuracy of the clustering results between max min and random centroid selection has an accuracy of 64.81%, and the outlier accuracy is 75%.

Downloads

Download data is not yet available.

References

Puslapdik, PEDOMAN PENDAFTARAN KARTU INDONESIA PINTAR KULIAH - KIP KULIAH MERDEKA 2022. Jakarta: Sekretaris Jenderal Kemendikbudristek, 2022. [Online]. Available: https://kip-kuliah.kemdikbud.go.id/uploads/Pedoman-Pendaftaran-KIP-K-2022-ver-20220202---final_cd9b5e.pdf

G. Pu, L. Wang, J. Shen, and F. Dong, “A hybrid unsupervised clustering-based anomaly detection method,” Tsinghua Sci. Technol., vol. 26, no. 2, pp. 146–153, 2021, doi: 10.26599/TST.2019.9010051.

M. Menhendry, A. Alfian, E. Adril, J. Junaidi, and Z. Zulhendri, “Penerapan Quality Control pada Souvenir Logo PNP dengan Metode Box Plot dan Six Sigma,” J. Tek. Mesin, vol. 14, no. 2, pp. 112–117, 2021, doi: 10.30630/jtm.14.2.674.

D. F. Pramesti, Lahan, M. Tanzil Furqon, and C. Dewi, “Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 9, pp. 723–732, 2017, doi: 10.1109/EUMC.2008.4751704.

M. Y. Darsyah, “Penggunaan Stem and Leaf dan Boxplot untuk Analisis Data,” J. Pendidik. Mat., vol. 1, no. 1, pp. 55–67, 2014, [Online]. Available: http://103.97.100.145/index.php/JPMat/article/view/1045/1093

P. R. Sihombing, S. Suryadiningrat, D. A. Sunarjo, and Y. P. A. C. Yuda, “Identifikasi Data Outlier (Pencilan) dan Kenormalan Data Pada Data Univariat serta Alternatif Penyelesaiannya,” J. Ekon. Dan Stat. Indones., vol. 2, no. 3, pp. 307–316, 2023, doi: 10.11594/jesi.02.03.07.

S. Bu’ulolo;Efori, Mesran, Hasibuan;Nelly Astuti, Utomo;Aripin;Soeb, Putro Utomo, Big Data Analysis dengan Phyton untuk Perguruan Tinggi, I. Yogyakarta, 2023.

Buulolo;Efori, Data Mining Untuk Perguruan Tinggi. Yogyakarta: deepublish, 2020.

E. A. Saputra and Y. Nataliani, “Analisis Pengelompokan Data Nilai Siswa untuk Menentukan Siswa Berprestasi Menggunakan Metode Clustering K-Means,” J. Inf. Syst. Informatics, vol. 3, no. 3, pp. 424–439, 2021, doi: 10.51519/journalisi.v3i3.164.

B. Wira, A. E. Budianto, and A. S. Wiguna, “Implementasi Metode K-Medoids Clustering Untuk Mengetahui Pola Pemilihan Program Studi Mahasiwa Baru Tahun 2018 Di Universitas Kanjuruhan Malang,” RAINSTEK J. Terap. Sains Teknol., vol. 1, no. 3, pp. 53–68, 2019, doi: 10.21067/jtst.v1i3.3046.

P. Arora, Deepali, and S. Varshney, “Analysis of K-Means and K-Medoids Algorithm for Big Data,” in Physics Procedia, 2016. doi: 10.1016/j.procs.2016.02.095.

E. Buulolo and R. Syahputra, “Implementasi Algoritma Clustering K-Means Untuk Mengelompokkan Mahasiswa Baru Yang Berpotensi ( Studi Kasus : Stmik Budi Darma ),” vol. 2, no. September, pp. 17–24, 2019.

D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.

I. Kamila et al., “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,” vol. 5, no. 1, pp. 119–125, 2019.

A. Bhat, “K-Medoids Clustering Using Partitioning Around Medoids for Performing Face Recognition,” Int. J. Soft Comput. Math. Control, 2014, doi: 10.14810/ijscmc.2014.3301.

W. A. Triyanto, “ALGORITMA K-MEDOIDS UNTUK PENENTUAN STRATEGI PEMASARAN PRODUK,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., 2015, doi: 10.24176/simet.v6i1.254.

C. Zhang et al., “Unsupervised Anomaly Detection Based on Deep Autoencoding and Clustering,” Secur. Commun. Networks, vol. 2021, 2021, doi: 10.1155/2021/7389943.

B. Tang and H. He, “A local density-based approach for outlier detection,” Neurocomputing, vol. 241, pp. 171–180, 2017, doi: 10.1016/j.neucom.2017.02.039.

I. S. Rufiana, W. Wahyudi, and D. A. Nurhidayah, “Misinterpretasi Mahasiswa pada Representasi Histogram dan Box Plot,” ANARGYA J. Ilm. Pendidik. Mat., vol. 3, no. 2, pp. 82–87, 2020, doi: 10.24176/anargya.v3i2.5324.

N. Puspitasari, G. Lempas, H. Hamdani, H. Haviuddin, and A. Septiarini, “Perbandingan Algoritma K-Means dan Algoritma K-Medoids Pada Kasus Covid-19 di Indonesia,” Build. Informatics, Technol. Sci., vol. 4, no. 4, pp. 2015–2027, 2023, doi: 10.47065/bits.v4i4.2994.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Deteksi Outlier Hasil Clustering Algoritma K-Medoids Menggunakan Metode Boxplot Pada Data KIP Kuliah

Dimensions Badge
Article History
Submitted: 2024-07-03
Published: 2024-08-15
Abstract View: 1005 times
PDF Download: 912 times
Section
Articles