Penerapan Metode Support Vector Machine Dalam Memprediksi Prediksi Cuaca
Abstract
Weather is a natural that has a big impact on humans. Information about weather predictions is really needed by humans, especially in the city of Medan. This information is very useful for knowing weather events around us. Data mining is a process of collecting important information from large data, so that it can help make decisions and make accurate predictions. So researchers are interested in conducting research in predicting the weather in the city of Medan using the Support Vector Machine (SVM) method as a solution for predicting the weather in the city of Medan. The application of data mining using the SVM method helps produce precise accuracy for weather based on predetermined criteria. This method is suitable for weather predictions because it is able to provide clear and accurate assessments with weather predictions of 54.55%.
Downloads
References
A. Zulfiani and C. Fauzi, “Penerapan Algorimta Backpropagation Untuk Prakiraan Cuaca Harian Dibandingkan Dengan Support Vector Machine dan Logistic Regression,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1229–1237, 2023, doi: 10.30865/mib.v7i3.6173.
A. R. I. Pratama, S. A. Latipah, and B. N. Sari, “Optimasi Klasifikasi Curah Hujan Menggunakan Support Vector Machine (Svm) Dan Recursive Feature Elimination (Rfe),” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 2, pp. 314–324, 2022, doi: 10.29100/jipi.v7i2.2675.
A. Syaputra, B. Muslim, N. S. Prawira, and Edowinsyah, “Implementasi Metode Support Vector Machine Dengan Algoritma Genetika Pada Prediksi Konsumsi Energi Untuk Gedung Beton Bertulang,” Fakt. Exacta, vol. 16, no. 2, pp. 142–153, 2023, doi: 10.30998/faktorexacta.v16i2.16657.
I. Muslim Karo Karo et al., “Analisis Sentimen Ulasan Aplikasi Info BMKG di Google Play Menggunakan TF-IDF dan Support Vector Machine,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1423–1430, 2023, doi: 10.47065/josh.v4i4.3943.
N. H. Riyantoni, M. F. Bahreisy, I. Hakim, and D. Rolliawati, “Komparasi Support Vector Machine (Svm) Dan Autoregressive Integrated Moving Average (Arima) Pada Peramalan Hujan Di Daerah Albury, Australia,” J. Sist. Inf. dan Inform., vol. 6, no. 1, pp. 59–68, 2023, doi: 10.47080/simika.v6i1.2412.
A. Satria, R. Maulida Badri, I. Safitri, and H. Artikel, “Prediksi Hasil Panen Tanaman Pangan Sumatera dengan Metode Machine Learning,” Digit. Transform. Technol. | e, vol. 3, no. 2, pp. 389–398, 2023, [Online]. Available: https://doi.org/10.47709/digitech.v3i2.2852.
Nurul Salsabila Syam et al., “Model Support Vector Machine untuk Prediksi pada Penggunaan Energi Listrik di Rumah Hemat Energi,” J. Inform., vol. 1, no. 2, pp. 56–59, 2022, doi: 10.57094/ji.v1i2.360.
H. Jayadianti, T. A. Cahyadi, N. A. Amri, and M. F. Pitayandanu, “Metode Komparasi Artificial Neural Network Pada Prediksi Curah Hujan - Literature Review,” J. Tekno Insentif, vol. 14, no. 2, pp. 48–53, 2020, doi: 10.36787/jti.v14i2.150.
A. Arif and Nurmaleni, “KOMPARASI REGRESI LINEAR BERGANDA DAN SUPPORT VECTOR MACHINE UNTUK PREDIKSI KOPI ROBUSTA PAGAR ALAM,” J. Ilm. Betrik, vol. 14, no. 03, pp. 713–726, 2023.
A. S. Budi and P. H. Susilo, “Implementasi Metode Svm Untuk Memprediksi Hasil Panen Tanaman Padi,” Joutica, vol. 6, no. 1, p. 434, 2021, doi: 10.30736/jti.v6i1.583.
W. Indrasari and H. Suhendar, “ANALISIS MODEL PREDIKSI CUACA MENGGUNAKAN SUPPORT VECTOR MACHINE , GRADIENT BOOSTING , RANDOM FOREST , DAN,” vol. XII, pp. 119–128, 2024.
J. Yandi, T. B. Kurniawan, E. S. Negara, and M. Akbar, “Prediksi Lokasi Titik Panas Kebaran Hutan menggunakan Model Regresion SVM (Support Vector Machine) pada Data Kebakaran Hutan Daops Manggala Agni Oki Provinsi Sumatera Selatan Tahun 2019,” InfoTekJar J. Nas. Inform. dan Teknol. Jar., vol. 6, no. 1, pp. 10–15, 2021, [Online]. Available: https://jurnal.uisu.ac.id/index.php/infotekjar/article/view/4101.
Zaenuddin and M. R. Wathani, “Prediksi Lama Matahari Bersinar Menggunakan Algoritma Support Vector Machine,” Pros. Has. Penelit. Dosen Uniska, vol. 5, no. 3, pp. 248–253, 2019.
R. R. Fiska, “Penerapan Teknik Data Mining dengan Metode Support Vector Machine (SVM) untuk Memprediksi Siswa yang Berpeluang Drop Out (Studi Kasus di SMKN 1 Sutera),” SATIN - Sains dan Teknol. Inf., vol. 3, no. 1, p. 15, 2017, doi: 10.33372/stn.v3i1.200.
W. R. U. Fadilah, D. Agfiannisa, and Y. Azhar, “Analisis Prediksi Harga Saham PT. Telekomunikasi Indonesia Menggunakan Metode Support Vector Machine,” Fountain Informatics J., vol. 5, no. 2, p. 45, 2020, doi: 10.21111/fij.v5i2.4449.
B. Miftahurrohmah and C. Wulandari, “Analisis Prediksi Mahasiswa Mengundurkan Diri Dari Universitas Xyz Dengan Metode Support Vector Machine,” Netw. Eng. Res. Oper., vol. 4, no. 3, pp. 173–179, 2019.
Y. I. Mukti, “Sistem Prediksi Lulus Tepat Waktu Tugas Akhir Mahasiswa Menggunakan Support Vector Machine (Svm),” JUTIM (Jurnal Tek. Inform. Musirawas), vol. 5, no. 2, pp. 110–115, 2020, doi: 10.32767/jutim.v5i2.1050.
B. Efori, Data Mining Untuk Perguruan Tinggi. Yogyakarta: Deepublish, 2020.
F. Luis and G. Moncayo, “Konsep Data Mining.”
Budiharto Widodo, PEMROGRAMAN PYTHON UNTUK ILMU KOMPUTER DAN TEKNIK. ANDI (Anggota IKAPI), 2018.
A. Frenica, L. Lindawati, L. Lindawati, S. Soim, and S. Soim, “Implementasi Algoritma Support Vector Machine (SVM) untuk Deteksi Banjir,” INOVTEK Polbeng - Seri Inform., vol. 8, no. 2, p. 291, 2023, doi: 10.35314/isi.v8i2.3443.
N. Pratiwi and Y. Setyawan, “Analisis Akurasi Dari Perbedaan Fungsi Kernel Dan Cost Pada Support Vector Machine Studi Kasus Klasifikasi Curah Hujan Di Jakarta,” J. Fundam. Math. Appl., vol. 4, no. 2, pp. 203–212, 2021, doi: 10.14710/jfma.v4i2.11691.
R. trias Handayanto and Herlawati, Data Mining dan Machine Learning Menggunakan Matlab dan Python. BANDUNG: informatika bandung, 2020.
B. D. Pranata, U. Mahdiyah, and P. Kasih, “Pemodelan Gaya Belajar Siswa dengan Menggunakan Support Vector Machine,” Nusant. Eng., vol. 6, no. 2, pp. 144–150, 2023, doi: 10.29407/noe.v6i2.20884.
A. Toha, P. Purwono, and W. Gata, “Model Prediksi Kualitas Udara dengan Support Vector Machines dengan Optimasi Hyperparameter GridSearch CV,” Bul. Ilm. Sarj. Tek. Elektro, vol. 4, no. 1, pp. 12–21, 2022, doi: 10.12928/biste.v4i1.6079.
N. W. Sri wahyuni, “Penerapan Metode Klasifikasi Support Vector Machine (Svm) Untuk Menentukan Karyawan Putus Kontrak Pada Pt. Tae Hang Indonesia,” J. Inform. SIMANTIK, vol. 4, no. September, pp. 10–15, 2019.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Metode Support Vector Machine Dalam Memprediksi Prediksi Cuaca
Pages: 368-379
Copyright (c) 2024 Muhammad Naufal Rifqi, Rima Tamara Aldisa

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















