Analisis Kombinasi Algoritma K-Means Clustering dan TOPSIS Untuk Menentukan Pendekatan Strategi Marketing Berdasarkan Background Target Audiens
Abstract
The promotion is an annual agenda for STIMIK Tunas Bangsa Banjarnegara. The aim of this promotional activity is to attract more new students every year. On the other hand, campus promotion encounters obstacles in mapping applicant data from previous years so that considerations for new promotion policies are based on data from the school of origin of alumni or students. By using the K-Means Clustering algorithm, applicant data can be grouped according to the background represented through the school origin attribute. , parents' occupation and place of origin. Then the data is processed using DSS with the TOPSIS method to obtain priority references for marketing types for each cluster. The results of calculating the silhouette coefficient value for the five clusters obtained a score of 0.426. Meanwhile, in the ranking process using the TOPSIS method, the first rank was found in cluster 0 with a score of 0.994110. Further stages use the Decision Tree method to obtain output in the form of recommendations for promotion types for each cluster. For example, cluster 0 is recommended to use promotion types with codes P1, P2, P3, P8 and P9.
Downloads
References
S. Assylla and Nugraha, “Perancangan Strategi Pemasaran dengan Pendekatan Analisis SWOT dan Metode TOPSIS,” J. Ris. Tek. Ind., pp. 129–140, 2022, doi: 10.29313/jrti.v2i2.1283.
C. L. R. Winasis, H. S. Widianti, and B. Hadibrata, “Determinasi Keputusan Pembelian: Harga, Promosi Dan Kualitas Produk (Literature Review Manajemen Pemasaran),” J. Ilmu Manaj. Terap., vol. 3, no. 4, pp. 452–462, 2022, [Online]. Available: https://doi.org/10.31933/jemsi.v3i4
M. T. Bolinger, M. A. Josefy, R. Stevenson, and M. A. Hitt, Experiments in Strategy Research: A Critical Review and Future Research Opportunities, vol. 48, no. 1. 2022. doi: 10.1177/01492063211044416.
S. B. H. Sakur, M. Silangen, and D. Tuwohingide, “Penerapan Algoritma K-Means Cluster dan Metode TOPSIS pada Pemilihan Mahasiswa kunjungan Industri,” J. Ilm. Tek. Inform. dan Sist. Inf., vol. 11, no. 3, pp. 851–860, 2022, [Online]. Available: http://ojs.stmik-banjarbaru.ac.id/index.php/jutisi/article/view/1045
K. Khomsatun, D. Ikhsan, M. Ali, and K. Kursini, “Sistem Pengambilan Keputusan Pemilihan Lahan Tanam Di Kabupaten Wonosobo Dengan K-Means Clustering Dan Topsis,” J. Nas. Pendidik. Tek. Inform., vol. 9, no. 1, p. 55, 2020, doi: 10.23887/janapati.v9i1.23073.
Khoironi, “Kombinasi Metode K-Means Dan Analytic Hierarchy Process Dalam Menentukan Penerima Beasiswa,” Magister Teknik Informatika, Universitas AMIKOM Yogyakarta, 2020.
Oki Oktaviarna Tensao, I Nyoman Yudi Anggara Wijaya, and Ketut Queena Fredlina, “Analisa Data Mining dengan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru Pada STMIK Primakara,” Inf. (Jurnal Inform. dan Sist. Informasi), vol. 14, no. 1, pp. 1–17, 2022, doi: 10.37424/informasi.v14i1.135.
B. T. SUTRISNO and W. Andriyani, “PENERAPAN MADM DENGAN METODE SAW UNTUK MENENTUKAN TARGET PROMOSI BERDASARKAN ASAL JURUSAN DI SEKOLAH,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 2, pp. 480–492, Oct. 2021, doi: 10.24176/simet.v11i2.4784.
T. Hidayat, “Klasifikasi Data Jamaah Umroh Menggunakan Metode K-Means Clustering,” J. Sistim Inf. dan Teknol., pp. 19–24, Feb. 2022, doi: 10.37034/jsisfotek.v4i1.115.
Andry, Yani Maulita, and Suci Ramadani, “Sistem Pendukung Keputusan Penentuan Lokasi Promosi Penerimaan Siswa Baru Di MTS. S. Hubbul Wathan Modal Bangsa,” 2021.
M. A. Kasri and H. Jati, “Kombinasi K-Means dan Simple Additive Weighting dalam Menentukan Lokasi dan Strategi Pemasaran Universitas,” no. 2, pp. 132–141, 2020.
N. A. Rahmalinda and A. Jananto, “Penerapan Metode K-Means Clustering Dalam Menentukan Strategi Promosi Berdasarkan Data Penerimaan Mahasiswa Baru,” J. Tekno Kompak, vol. 16, no. 2, pp. 163–175, 2022.
I. P. D. Suarnatha, I. M. Agus, and O. Gunawan, “Jurnal Computer Science and Information Technology ( CoSciTech ) manusia,” CoSciTech, vol. 3, no. 2, pp. 73–80, 2022.
Amaliya Hani Nafisah, “Clustering Bidang Keilmuan Menggunakan Kombinasi,” vol. 04, pp. 405–413, 2023.
W. Sudrajat, I. Cholid, and J. Petrus, “Penerapan Algoritma K-Means Clustering untuk Pengelompokan UMKM Menggunakan Rapidminer,” J. JUPITER, vol. 14, no. 1, pp. 27–36, 2022.
D. A. Fakhri, S. Defit, and Sumijan, “Optimalisasi Pelayanan Perpustakaan terhadap Minat Baca Menggunakan Metode K-Means Clustering,” J. Inf. dan Teknol., vol. 3, pp. 160–166, 2021, doi: 10.37034/jidt.v3i3.137.
L. T. Sianturi and M. Mesran, “Penerapan Kombinasi Metode ROC dan TOPSIS Pemilihan Karyawan Terbaik Untuk Rekomendasi Promosi Jabatan,” J. Comput. Syst. Informatics, vol. 4, no. 1, pp. 51–60, 2022, doi: 10.47065/josyc.v4i1.2215.
Sunarti, “Perbandingan Metode TOPSIS dan SAW Untuk Pemilihan Rumah Tinggal Comparison of TOPSIS and SAW Methods For Home Selection,” J. Inf. Syst., vol. 3, no. 1, p. 69, 2021.
D. Berutu, “Sistem Pendukung Keputusan Pemilihan Ibu PKK Terbaik Menggunakan Metode Fuzzy Tahani (Studi Kasus: Kantor PKK Pakpak Bharat),” J. Comput. Syst. Informatics …, vol. 1, no. 4, pp. 261–268, 2020, [Online]. Available: http://ejurnal.seminar-id.com/index.php/josyc/article/view/180%0Ahttps://ejurnal.seminar-id.com/index.php/josyc/article/download/180/261
Z. Yani, D. Gusmita, and N. Pohan, “Sistem Pendukung Keputusan Penerimaan Karyawan Menggunakan Metode TOPSIS,” vol. 4307, no. June, pp. 205–210, 2022, doi: 90619941/JSSR.V205.4307.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Kombinasi Algoritma K-Means Clustering dan TOPSIS Untuk Menentukan Pendekatan Strategi Marketing Berdasarkan Background Target Audiens
Pages: 393-403
Copyright (c) 2024 Nurus Sarifatul Ngaeni, Kusrini Kusrini, Kusnawi Kusnawi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















