Prediksi Harga Kelapa Sawit Menggunakan Metode Extreme Learning Machine
Abstract
Palm oil is one of the keys to the Indonesian economy and the main commodity for attracting foreign investment. The palm oil and palm kernel industry generates most of the foreign currency from palm oil. The price of palm oil often goes up and down every month resulting in instability in the income received by people who own oil palm plantations. The aim of predicting palm oil prices is to carry out appropriate planning or steps for palm oil business actors. One way to overcome this problem is to make predictions. One method that can make predictions is the Extreme Learning Machine (ELM). ELM is an artificial neural network method used to predict palm oil prices. The ELM method is a feedforward method with a single hidden layer which is better known as a single hidden layer feedforward neural network (SLFNs). In this research, the best implementation was 5 inputs with 20 neurons in the hidden layer with output in the form of palm oil price predictions. Based on the tests carried out, the research produced the smallest error rate of 0.0027111424247658633 using 20 neurons in the hidden layer so that the latest data prediction test results for 5 price rotations in September rotation 1 were 1400.314191, September rotation 2 were 1846.798921, September rotation 3 amounted to 1505.430419, September rotation 4 amounted to 2301.853412, September rotation 5 amounted to 2645.082489 in palm oil price predictions.
Downloads
References
V. Arinal and M. Azhari, “Penerapan Regresi Linear Untuk Prediksi Harga Beras Di Indonesia,” J. Sains dan Teknol., vol. 5, no. 1, p. |pp, 2023, [Online]. Available: https://doi.org/10.55338/saintek.v5i1.1417
Mustari, Yonariza, and R. Khairati, “Analisis Faktor-Faktor Yang Mempengaruhi Produksi Komoditas Kelapa Sawit Perkebunan Rakyat Dengan Pola Swadaya Di Kabupaten Aceh Tamiang,” J. Ilm. MEA (Manajemen, Ekon. dan Akuntansi), vol. 4, no. 3, p. 1542, 2020.
E. Lette, M. Zunaidi, and W. R. Maya, “Prediksi Penjualan Crude Palm Oil (CPO) Menggunakan Metode Regresi Linear Berganda,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 3, p. 128, 2022, doi: 10.53513/jursi.v1i3.5106.
S. Surya, D. Falihin, and S. Balkis, “Pengaruh Harga Kelapa Sawit Terhadap Tingkat Kesejahteraan Petani Sawit Desa Sinabatta Kecamatan Topoyo Kabupaten Mamuju Tengah,” Soc. Landsc. J., vol. 2, no. 1, p. 14, 2021, doi: 10.56680/slj.v2i1.19717.
A. Zulhamsyah, S. Saifullah, and M. R. Lubis, “Penerapan Backpropagation Dalam Memprediksi Produksi Kelapa Sawit Unit Kebun Marjandi,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 779–787, 2019, doi: 10.30865/komik.v3i1.1693.
A. A. Aulia, A. M. Elhanafi, H. Dafitri, A. Aulia, A. M. Elhanafi, and H. Dafitri, “Implementasi Algoritma Gated Recurrent Unit Dalam Melakukan Prediksi Harga Kelapa Sawit Dengan Memanfaatkan Model Recurrent Neural Network ( RNN ),” Pros. SNASTIKOM Semin. Nas. Teknol. Inf. Komun. Pap., pp. 288–294, 2021.
A. K. Baskara, A. Nazir, M. Irsyad, Y. Yusra, and F. Insani, “Implementasi Data Mining Memprediksi Penjualan Crude Palm Oil Berdasarkan Kapasitas Tangki Menggunakan Multiple Linear Regression,” J. Sist. Komput. dan Inform., vol. 4, no. 3, p. 493, 2023, doi: 10.30865/json.v4i3.5665.
E. Efendi, S. Fajri, S. Safruddin, and ..., “Prediksi Produksi Tanaman Perkebunan Kelapa Sawit di Pulau Sumatera Tahun 2023 dengan Algoritma Bayesian Regulation,” Kesatria J. …, vol. 4, no. 2, pp. 459–468, 2023, [Online]. Available: https://www.pkm.tunasbangsa.ac.id/index.php/kesatria/article/view/182%0Ahttps://www.pkm.tunasbangsa.ac.id/index.php/kesatria/article/download/182/181
A. Astri Frianti, Respitawulan, and I. Sukarsih, “Prediksi harga Crude Palm OIL (CPO) di Indonesia dengan menggunakan Metode Fuzzy Time Series Markov Chain,” Bandung Conf. Ser. Math., vol. 3, no. 1, pp. 68–76, 2023, doi: 10.29313/bcsm.v3i1.6821.
L. R. S. Wati, I. Cholissodin, and P. P. Adikara, “Implementasi Algoritme Extreme Learning Machine (ELM) Untuk Prediksi Harga Emas Bagi Investor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2408–2415, 2019, [Online]. Available: http://j-ptiik.ub.ac.id
Y. A. Sanudin and J. Nugraha, “Penerapan Metode Extreme Learning Machine Untuk Meramalkan Wisatawan Mancanegara di Sulawesi Utara,” J. Pros. Sendika, vol. 5, no. 2, pp. 99–109, 2019.
M. I. Sa’ad, “Perbandingan Algoritma Extreme Learning Machine dan Multilayer Perceptron Dalam Prediksi Mahasiswa Drop Out,” Bull. Inf. Technol., vol. 4, no. 2, pp. 369–376, 2023.
H. G. Ginting, Z. Azmi, and R. I. Ginting, “Jaringan Syaraf Tiruan Dalam Peramalan Harga Jual Sawit Dengan Metode Backpropagation,” J. Cyber Tech, no. x, 2020, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jct/article/view/1561
M. Zhahran, Z. Irawan, Y. S. Akil, and I. C. Gunadin, “Peramalan Beban Listrik Kota Maros Berbasis Extreme Learning Machine (ELM),” J. EKSITASI, vol. 1, no. 2, p. 2022, 2022.
Y. D. Lestari, E. Santoso, and A. Ridok, “Prediksi Harga Saham Menggunakan Metode Extreme Learning Machine ( ELM ) ( Studi Kasus : Saham PT Bank Rakyat Indonesia ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 7, pp. 2801–2808, 2021.
B. A. Aditiya et al., “Implementasi Metode Extreme Learning Machine (ELM) Untuk Memprediksi Indeks Pembangunan Manusia,” Semin. Nas. Mhs. Ilmu Komput. dan Apikasi, pp. 493–503, 2020.
S. B. Waskito, I. Cholissodin, and E. Santoso, “Implementasi Algoritme Extreme Learning Machine ( ELM ) Untuk Klasifikasi Penanganan Human Papilloma Virus ( HPV ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 3, no. 1, pp. 84–89, 2019.
A. Fitri Boy, “Implementasi Data Mining Dalam Memprediksi Harga Crude Palm Oil (CPO) Pasar Domestik Menggunakan Algoritma Regresi Linier Berganda (Studi Kasus Dinas Perkebunan Provinsi Sumatera Utara),” J. Sci. Soc. Res., vol. 4307, no. 2, pp. 78–85, 2020, [Online]. Available: http://jurnal.goretanpena.com/index.php/JSSR
Moch Farryz Rizkilloh and Sri Widiyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 25–31, 2022, doi: 10.29207/resti.v6i1.3630.
D. Hadyan Tisantri, R. Cahya Wihandika, and S. Adinugroho, “Prediksi Keputusan Pelanggan Menggunakan Extreme Learning Machine Pada Data Telco Customer Churn,” J. Pengemb. Teknol. Inf. dan Ilmu KomputerJurnal Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 11, pp. 10516–10523, 2019.
J. Khairunnisa and S. Syaharuddin, “Prediksi Inflasi di Kota Mataram Menggunakan Back propagation Neural Network,” Semin. Nas. Lppm …, vol. 1, pp. 151–157, 2022, [Online]. Available: http://journal.ummat.ac.id/index.php/semnaslppm/article/view/9220
E. Budianita, F. Syafria, and I. Afriyanti, “Prediksi Jumlah Perceraian Menggunakan Metode Extreme Learning Machine (ELM),” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1448–1454, 2023, doi: 10.47065/josh.v4i4.3581.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Prediksi Harga Kelapa Sawit Menggunakan Metode Extreme Learning Machine
Pages: 267-274
Copyright (c) 2024 Jul Hariansyah, Elvia Budianita, Jasril Jasril, Iis Afrianty

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















