Perbandingan Jarak Metrik pada Klasifikasi Jamur Beracun Menggunakan Algoritma K-Nearest Neighbor (K-NN)


  • Andre Suarisman Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru, Indonesia
  • Alwis Nazir * Mail Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru, Indonesia
  • Fadhilah Syafria Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru, Indonesia
  • Liza Afriyanti Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Classification; Metric; K-Nearest Neighbor; Python; Mushroom

Abstract

Mushrooms are organisms from the kingdom fungi that have a fleshy body structure and can be consumed, but there are some species of mushrooms that are not safe to eat and have specific characteristics, so distinguishing between edible and poisonous mushrooms can be tricky due to the almost identical appearance of various mushroom species. Errors in identifying edible mushrooms can impact the health of consumers who consume the mushrooms. Evaluating the performance of various methods on a dataset is a key step in determining the most suitable classification method. This research is about how to measure the performance of classification methods on toxic mushroom datasets using the K-Nearest Neighbor algorithm with several metrics such as euclidean, manhattan and minkowski, which is a method for classifying new data based on proximity to existing training data. The results obtained in this study with several distance metrics can be concluded that the accuracy value of the manhattan metric is better than the euclidean and minkowski metrics. Because the manhattan metric gets the highest accuracy result of 99% with K = 100 and the lowest 82% with K = 3000, while the euclidean metric gets accuracy results with a value of 98% with K = 100 and 72% with K = 3000, and the minkowski metric gets accuracy results with a value of 96% at K = 100 and 64% at K = 3000.

Downloads

Download data is not yet available.

References

R. Hayami, Soni, and I. Gunawan, “Klasifikasi Jamur Menggunakan Algoritma Naïve Bayes,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 1, pp. 28–33, 2022, doi: 10.37859/coscitech.v3i1.3685.

Y. Yohannes, D. Udjulawa, and T. Ivan Sariyo, “Klasifikasi Jenis Jamur Menggunakan SVM dengan Fitur HSV dan HOG,” Petir, vol. 15, no. 1, pp. 113–120, 2022, doi: 10.33322/petir.v15i1.1101.

E. Praja, W. Mandala, D. E. Putri, and R. Permana, “Penerapan Data Mining untuk Klasifikasi Hasil Panen Jamur Tiram Menggunakan Algoritma K-Nearest Neighbors,” J. Media Inform. Budidarma, vol. 7, no. 1, pp. 223–230, 2023, doi: 10.30865/mib.v7i1.5252.

Putra Ivan Permana, “KASUS-KASUS KERACUNAN JAMUR LIAR DI INDONESIA Poisoning Cases of Wild Edible Mushrooms in Indonesia,” J. Ekol. Kesehat. , vol. 20, pp. 215–230, 2021, [Online]. Available: https://doi.org/10.22435/jek.v20i3.4943

I. P. Putra, “Kasus keracunan Inocybe sp. di Indonesia,” Pros. Semin. Nas. Biol., no. September, pp. 148–153, 2020.

H. Rofiq, K. C. Pelangi, and Y. Lasena, “Penerapan Data Mining Untuk Menentukan Potensi Hujan Harian Dengan Menggunakan Algoritma KNN,” J. Manaj. Inform. dan Sist. Inf., vol. 3, no. 1, pp. 8–15, 2020, [Online]. Available: http://mahasiswa.dinus.ac.id/docs/skripsi/jurnal/19417.pdf

A. M. Argina, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, 2020, doi: 10.33096/ijodas.v1i2.11.

D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.

D. N. Anisa and Jumanto, “Klasifikasi Penyakit Diabetes Menggunakan Algoritma Naive Bayes,” Din. Inform., vol. 14, no. 1, pp. 33–42, 2022.

A. Setiawan, “Perbandingan Penggunaan Jarak Manhattan, Jarak Euclid, dan Jarak Minkowski dalam Klasifikasi Menggunakan Metode KNN pada Data Iris,” J. Sains dan Edukasi Sains, vol. 5, no. 1, pp. 28–37, 2022, doi: 10.24246/juses.v5i1p28-37.

E. Purwaningsih and E. Nurelasari, “Penerapan K-Nearest Neighbor Untuk Klasifikasi Tingkat Kelulusan Pada Siswa,” Syntax J. Inform., vol. 10, no. 01, pp. 46–56, 2021, doi: 10.35706/syji.v10i01.5173.

M. K. Neighbor, “Prediksi penjualan produk unilever menggunakan metode k-nearest neighbor,” vol. 06, pp. 155–160, 2021.

A. Indriani, “Analisa Perbandingan Metode Naïve Bayes Classifier Dan K-Nearest Neighbor Terhadap Klasifikasi Data,” Sebatik, vol. 24, no. 1, pp. 1–7, 2020, doi: 10.46984/sebatik.v24i1.909.

F. Alghifari and D. Juardi, “Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma Naïve Bayes,” 2021.

R. G. Whendasmoro and J. Joseph, “Analisis Penerapan Normalisasi Data Dengan Menggunakan Z-Score Pada Kinerja Algoritma K-NN,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 872, 2022, doi: 10.30865/jurikom.v9i4.4526.

A. S. REZKI, “Klasifikasi Emosi Pada Twitter Dengan Metode K-Nearest Neighbor ( Knn ) Tugas Akhir,” 2021.

I. Loelianto, M. S. S. Thayf, and H. Angriani, “Implementasi Teori Naive Bayes Dalam Klasifikasi Calon Mahasiswa Baru Stmik Kharisma Makassar,” SINTECH (Science Inf. Technol. J., vol. 3, no. 2, pp. 110–117, 2020, doi: 10.31598/sintechjournal.v3i2.651.

K. Neighbor et al., “Klasifikasi Penentuan Pengajuan Kartu Kredit Menggunakan K-Nearest Neighbor,” vol. 22, no. 1, pp. 73–82, 2020.

L. Farokhah, “Implementasi K-Nearest Neighbor untuk Klasifikasi Bunga Dengan Ekstraksi Fitur Warna RGB,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, pp. 1129–1136, 2020, doi: 10.25126/jtiik.2020722608.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Jarak Metrik pada Klasifikasi Jamur Beracun Menggunakan Algoritma K-Nearest Neighbor (K-NN)

Dimensions Badge
Article History
Submitted: 2023-10-31
Published: 2023-11-28
Abstract View: 657 times
PDF Download: 538 times
Section
Articles