Analisa Kinerja Metode Support Vector Machine untuk Analisa Sentimen Ulasan Pengguna Google Maps
Abstract
Sentiment Analysis is a subset of data mining that analyzes, understands, processes, and extracts textual data in the form of opinions or reviews about a certain object. The advancement of technology, such as Google Maps, can make it easier to find information on the location of an object. Google Maps also gives an object review. These reviews provide information that can be used to examine the feelings expressed by visitors. A text mining methodology with the Support Vector Machine method is utilized to process customer review text data. This method is part of a classification strategy that recognizes and categorizes data into two portions separated by a hyperplane. The data used in this case study are visitors' reviews that is recorded on Google Maps Review of the Eternal Flame, a tourist attraction obejct located in Sumenep.
Downloads
References
A. Sucipto, and H. Kusumodestoni, 2022. Implementasi Data Mining Algoritma Apriori Terhadap Penjualan Spare Part Motor di Yamaha Arista Subang. AMRI (Analisa Metode Rekayasa Informatika), 1(1), pp.52-58.
A. Wahyudi, S.O. Tampubolon, N. Afrilia Putri, A. Ghassa, E. Rasywir, and D. Kisbianty, 2022. Penerapan Data Mining Algoritma Naive Bayes Clasifier untuk Mengetahui Minat Beli Pelanggan terhadap INDIHOME. Jurnal Informatika Dan Rekayasa Komputer (JAKAKOM), 2(2), pp.240-247.
A. Nofianti, M.Y. Yawan, and M.A. Nazar, M.A., 2023. Implementasi Data Mining dalam Pengolahan Data Transaksi Toko Sembako Menggunakan Algoritma Apriori (Studi Kasus: Toko Devan Mart). G-Tech: Jurnal Teknologi Terapan, 7(1), pp.165-173.
S.P. Tamba, 2022. Penerapan Data Mining Algoritma Apriori Dalam Menentukan Stok Bahan Baku Pada Restoran Nelayan Menggunakan Metode Association Rule. Jurnal Sistem Informasi dan Ilmu Komputer Prima (JUSIKOM PRIMA), 5(2), pp.97-102.
R.D. Romadhona, 2022, September. Pemanfaatan Teknik Clustering untuk Mencapai Kecerdasan Bisnis Menggunakan Algoritma K-Means. In Seminar Nasional Sistem Informasi (SENASIF) (Vol. 6, pp. 3015-3023).
Hasanah, N.N. and Purnomo, A.S., 2022. Implementasi Data Mining Untuk Pengelompokan Buku Menggunakan Algoritma K-Means Clustering (Studi Kasus: Perpustakaan Politeknik LPP Yogyakarta). Jurnal Teknologi Dan Sistem Informasi Bisnis, 4(2), pp.300-311.
J.I. Pratiwi, D.R. Utami, and U. Enri, U., 2022. Klasifikasi Data Mining Dalam Menentukan Pemberian Pinjaman Berbasis Arisan Online dengan Algoritma C4. 5. InfoTekJar: Jurnal Nasional Informatika dan Teknologi Jaringan, 6(2), pp.262-266.
U.P. Sanjaya, T. Pribadi, and I.W.D. Prastya, I2022. Klasifikasi Dana Hibah Usaha Mikro Kecil dan Menengah dengan Metode Naïve Bayes. Indonesian Journal of Computer Science, 11(3).
A. H. Yunial, “Analisa Perbandingan Algoritma Klasifikasi Support Vector Machine, Decession Tree Dan Naive Bayes,” Pros. Semin. Nas. Inform. dan Sist. Inf. , vol. 5, no. 2, 2020.
Z. Alhaq, A. Mustopa, S. Mulyatun, and J. D. Santoso, “Penerapan Metode Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter,” J. Inf. Syst. Manag., vol. 3, no. 2, pp. 44–49, 2021, doi: 10.24076/joism.2021v3i2.558.
Kumar, A. and Starly, B., 2022. “FabNER”: information extraction from manufacturing process science domain literature using named entity recognition. Journal of Intelligent Manufacturing, 33(8), pp.2393-2407.
D.K. Jain, P. Boyapati, J. Venkatesh, and M. Prakash, 2022. An intelligent cognitive-inspired computing with big data analytics framework for sentiment analysis and classification. Information Processing & Management, 59(1), p.102758.
W. Fu, E.K. Choi, and H.S. Kim, 2022. Text mining with network analysis of online reviews and consumers’ satisfaction: A case study in Busan wine bars. Information, 13(3), p.127.
Lestari, T.P., 2022. Analisis Text Mining pada Sosial Media Twitter Menggunakan Metode Support Vector Machine (SVM) dan Social Network Analysis (SNA). Jurnal Informatika Ekonomi Bisnis, pp.65-71.
M. I. Fikri, T. S. Sabrila, and Y. Azhar, 2020. Perbandingan metode naïve bayes dan support vector machine pada analisis sentimen twitter. SMATIKA Jurnal: STIKI Informatika Jurnal, 10(02), pp.71-76.
Y.T. Pratama, 2018. Analisis Sentimen Opini Pelanggan Terhadap Aspek Pariwisata Pantai Malang Selatan Menggunakan TF-IDF dan Support Vector Machine (Doctoral dissertation, Universitas Brawijaya).
Syaifudin, Y.W. and Irawan, R.A., 2018. Implementasi Analisis Clustering Dan Sentimen Data Twitter Pada Opini Wisata Pantai Menggunakan Metode K-Means. Jurnal Informatika Polinema, 4(3), pp.189-189.
E. Widodo, I. Al Maksur, K.D. Larasati, and N.P. Saraswati, 2019, November. Analisis Sentimen Tripadvisor Terhadap Pariwisata Gunung Bromo dan Gunung Semeru. In Seminar Multimedia & Artificial Intelligence (Vol. 2, pp. 43-48).
R.P. Saputri, W.S. Winahju, dan K. Fithriasari, 2020. Klasifikasi Sentimen Wisatawan Candi Borobudur pada Situs TripAdvisor Menggunakan Support Vector Machine dan K-Nearest Neighbor. Jurnal Sains dan Seni ITS, 8(2), pp.D349-D356.
H. Herlawati, R. T. Handayanto, P. D. Atika, F. N. Khasanah, A. Y. P. Yusuf, and D. Y. Septia, 2021. Analisis Sentimen Pada Situs Google Review dengan Naïve Bayes dan Support Vector Machine. Jurnal Komtika (Komputasi dan Informatika), 5(2), pp.153-163.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisa Kinerja Metode Support Vector Machine untuk Analisa Sentimen Ulasan Pengguna Google Maps
Pages: 604-613
Copyright (c) 2023 Andharini Dwi Cahyani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).