Rancang dan Bangun Sistem Pembersih Permukaan Panel Surya Otomatis dengan Sistem Elektromekanis Cerdas


  • Aripin Triyanto * Mail Universitas Pamulang, Tangerang Selatan, Indonesia
  • Heri Kusnadi Universitas Pamulang, Tangerang Selatan, Indonesia
  • (*) Corresponding Author
Keywords: Dust Density; Efficiency; Solar Radiation; Arduino Amega328p

Abstract

The influence of weather changes on the cleanliness of solar panel surfaces is a problem that must be faced at this time. One of the factors that can affect the output value of roof photovoltaic efficiency is the level of dust density found on the photovoltaic surface. Solutions that can be used as a panel surface cleaner can use an automatic cleaning system to overcome the amount of dust on the photovoltaic surface. The method used in this study uses the Arduino Amega328p component, GP2Y1010AU0F sensor, Arduino drive, and real-time testing. There is a dust sensor and a voltage sensor to determine the amount of dust density on the photovoltaic surface, while the voltage sensor can be used as a reader of the voltage output on the photovoltaic. This research aims to help humans work in cleaning rooftop solar panels and create a system for detecting the thickness of dust and dust cleaners to increase the efficiency value of solar panels from solar radiation absorbed on the surface. The results of the PWM research with a duty cycle of 100% Vout 11.72 Volts, Dust Density of 0.54 mg/m3 produce analog data of 3.75 Volts and an ADC value of 767. Meanwhile, an analog sensor value is obtained for a dust density of 0.41 mg/m3d. of 3.02 Volts, logic 1 and the cleaning actuator ON position. Surface conditions and abnormal conditions are dusty at 0.54 mg/m3 for photovoltaic sensors at 9.13. The resulting efficiency when the photovoltaic surface is clean is 55%-80%.

Downloads

Download data is not yet available.

References

M. Al-Ajmi, M. K. H. Muda, I. A. Halin, F. Mustapha, and M. K. A. M. Ariffin, “Design of true hybrid solar wind turbine for smaller hybrid renewable energy power plants,” J. Eng. Technol. Sci., vol. 52, no. 6, pp. 881–890, 2020, doi: 10.5614/j.eng.technol.sci.2020.52.6.8.

S. Ali Sadat, J. Faraji, M. Nazififard, and A. Ketabi, “The experimental analysis of dust deposition effect on solar photovoltaic panels in Iran’s desert environment,” Sustain. Energy Technol. Assessments, vol. 47, no. December 2020, p. 101542, 2021, doi: 10.1016/j.seta.2021.101542.

H. Chen et al., “Towards renewable public transport: Mining the performance of electric buses using solar-radiation as an auxiliary power source,” Appl. Energy, vol. 325, no. 308, p. 119863, 2022, doi: 10.1016/j.apenergy.2022.119863.

N. A. Amoah, G. Xu, A. R. Kumar, and Y. Wang, “Calibration of low-cost particulate matter sensors for coal dust monitoring,” Sci. Total Environ., vol. 859, no. September 2022, p. 160336, 2023, doi: 10.1016/j.scitotenv.2022.160336.

S. Chandra, P. Gaur, and D. Pathak, “Radial basis function neural network based maximum power point tracking for photovoltaic brushless DC motor connected water pumping system,” Comput. Electr. Eng., vol. 86, 2020, doi: 10.1016/j.compeleceng.2020.106730.

I. Mahfuddin, R. K. R, and A. H. Lubis, “Protoype Sistem Penyiram Lahan Perkebunan Kangkung Otomatis Berbasis Internet of Things dengan Logika Fuzzy Sugeno,” vol. 4, no. 2, pp. 443–450, 2023, doi: 10.47065/josyc.v4i2.2668.

M. Malik Al Falah, I. N. Satya Kumara, and W. G. Ariastina, “Perkembangan Riset Dan Produk Komersial Sistem Pembersih Panel Surya,” J. SPEKTRUM, vol. 8, no. 4, p. 29, 2022, doi: 10.24843/spektrum.2021.v08.i04.p4.

M. R. W. Kusuma, E. Apriaskar, and D. Djunaidi, “Rancang Bangun Sistem Pembersih Otomatis Pada Solar Panel Menggunakan Wiper Berbasis Mikrokontroler,” Techné J. Ilm. Elektrotek., vol. 19, no. 01, pp. 23–32, 2020, doi: 10.31358/techne.v19i01.220.

T. Dengan, A. Melalui, M. Wifi, M. B. Hc-, B. Adi, and A. Tanto, “Menggunakan Outseal Plc Dan Sensor Ir Proximity Yang,” 2016.

M. I. R. Jamaludin Purba, Aep Saepul Uyun, Didik Sugiyanto, “Perancangan Prototipe Alat Pembersih Panel Surya,” Kaji. Tek. Mesi, vol. 7, no. 1, pp. 1–8, 2022.

GSA, “GSA_Report_South Jakarta - Average hourly profiles Direct normal irradiation [Wh/m2],” 2022.

H. A. Maddah, “Modeling and designing of a novel lab-scale passive solar still,” J. Eng. Technol. Sci., vol. 51, no. 3, pp. 303–322, 2019, doi: 10.5614/j.eng.technol.sci.2019.51.3.1.

N. I. Nahin, M. Nafis, S. Prokash Biswas, M. Kamal Hosain, P. Das, and S. Haq, “Investigating the input power quality of multi-pulse AC-DC power converter fed induction motor drives,” Heliyon, vol. 8, no. 12, p. e11733, 2022, doi: 10.1016/j.heliyon.2022.e11733.

W. Qu et al., “An approach of studying the full-spectrum conversion potential for solar photovoltaic and thermal processes,” Energy Convers. Manag., vol. 253, no. January, p. 115194, 2022, doi: 10.1016/j.enconman.2021.115194.

K. Rathi, B. Vyas, P. Acharya, J. Vyas, and A. Dixit, “Solar panels salvaging for safety & sustainability,” Mater. Today Proc., vol. 69, pp. 519–523, 2022, doi: 10.1016/j.matpr.2022.09.259.

R. Adhitama, A. C. Wardhana, and ..., “Pengembangan Aplikasi Monitoring Anak Berkebutuhan Khusus di Sekolah Luar Biasa Menggunakan Metode User Centered Design (UCD),” … Comput. Syst. …, vol. 4, no. 1, pp. 155–161, 2022, doi: 10.47065/josyc.v4i1.2602.

B. M. Sulthon and E. Zuraidah, “Implementasi Digital Receptionist berbasis Web dan Android,” vol. 3, no. 1, pp. 57–64, 2021, doi: 10.47065/josyc.v3i1.947.

B. Smith, J. Dvorak, K. Semmens, and D. Colliver, “Using a computer based selection model for sizing of solar panels and battery back-up systems for use in a floating in-pond raceway,” Aquac. Eng., vol. 97, no. May 2021, p. 102238, 2022, doi: 10.1016/j.aquaeng.2022.102238.

S. Lestari and M. F. Pratama, “Penerapan Metode Long Short-Term Memory Pada Pendataan Warga Berbasis Android,” vol. 3, no. 4, pp. 156–161, 2022, doi: 10.47065/josyc.v3i4.1951.

P. T. Informatika, U. B. Darma, and A. Zhu-takaoka, “Implementasi Algoritma Zhu-Takaoka Untuk Pencarian Nama Obat Pada Aplikasi Katalog Obat Berbasis Android,” vol. 3, no. 3, pp. 106–109, 2022, doi: 10.47065/josyc.v3i3.1284.

M. Suzuki and M. Hirata, “Star-shaped control-vector sets of second-order systems with PWM-type input,” Automatica, vol. 116, p. 108924, 2020, doi: 10.1016/j.automatica.2020.108924.

S. Zhang, J. Li, R. Li, and X. Zhang, “Voltage sensor fault detection, isolation and estimation for lithium-ion battery used in electric vehicles via a simple and practical method,” J. Energy Storage, vol. 55, no. September, 2022, doi: 10.1016/j.est.2022.105555.

X. Wang, X. Tian, X. Chen, L. Ren, and C. Geng, “A review of end-of-life crystalline silicon solar photovoltaic panel recycling technology,” Sol. Energy Mater. Sol. Cells, vol. 248, no. September, p. 111976, 2022, doi: 10.1016/j.solmat.2022.111976.

S. N. Tackie and Ö. C. Özerdem, “Performance Evaluation and Viability Studies of Photovoltaic Power Plants in North Cyprus,” Int. J. Renew. Energy Res., vol. 12, no. 4, pp. 2238–2247, 2022, doi: 10.20508/ijrer.v12i4.13670.g8583.

A. Triyanto, G. Firasanto, E. Mualim, D. Agus, and L. Utomo, “Implementasi dan Sosialisasi Prototipe Panel Surya 30 WP sebagai Pembelajaran di Lab SMK Khazanah Kebajikan Pondok Cabe Pamulang , Tangerang Selatan,” vol. 2, no. 6, pp. 1849–1856, 2022.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Rancang dan Bangun Sistem Pembersih Permukaan Panel Surya Otomatis dengan Sistem Elektromekanis Cerdas

Dimensions Badge
Article History
Submitted: 2023-03-27
Published: 2023-05-30
Abstract View: 561 times
PDF Download: 1040 times
Issue
Section
Articles