Klasifikasi Citra Jenis Daun Berkhasiat Obat Menggunakan Algoritma Jaringan Syaraf Tiruan Extreme Learning Machine


  • Rhaishudin Jafar Rumandan * Mail Insititut Agama Islam Negeri Ambon, Ambon, Indonesia
  • Rini Nuraini Universitas Nasional, Jakarta Selatan, Indonesia
  • Nanang Sadikin Sekolah Tinggi Teknologi Informasi NIIT, Jakarta Selatan, Indonesia
  • Yuri Rahmanto Universitas Teknokrat Indonesia, Bandarlampung, Indonesia
  • (*) Corresponding Author
Keywords: Image Classification; Medicinal Leaves; Artificial Neural Networks; Extreme Learning Machines; Morphological Characteristics

Abstract

Leaves are one part of a plant that has benefits for humans, especially for the health of the body. Leaves can be used as herbal medicine which can be an alternative that can help in increasing immunity and body resistance. However, not all leaves have medicinal properties, therefore knowledge of the types of medicinal leaves is important. The aim of this research is to develop a classification system for the image of medicinal leaves using the Extreme Learning Machine (ELM) artificial neural network model. To support the ELM algorithm, morphological feature extraction is used which can provide information about the shape characteristics of existing objects. Extreme Learning Machine (ELM) is also known as an artificial neural network approach that uses one hidden layer. At the classification stage, the Extreme Learning Machine (ELM) algorithm can determine the weight value between the input neurons and the hidden layer randomly so that the learning pattern becomes faster. Based on the results of the precision, recall and accuracy tests, the precision value is 90.67%, the recall value is 89.47% and accuracy of 90%. So, based on these results it can be said that the ELM model that was built can classify images of leaf types with medicinal properties well.

Downloads

Download data is not yet available.

References

N. Azmin and A. Rahmawati, “Skrining Dan Analisis Fitokimia Tumbuhan Obat Tradisional Masyarakat Kabupaten Bima,” J. Bioteknol. Biosains Indones., vol. 6, no. 2, pp. 259–268, 2020.

A. Maulana, “Menakar Prospek Obat Herbal di Indonesia,” Universitas Padjadjaran, 2022. https://www.unpad.ac.id/2022/05/menakar-prospek-obat-herbal-di-indonesia/

T. W. Harjanti, H. Setiyani, J. Trianto, and Y. Rahmanto, “Classification of Mint Leaf Types Using Euclidean Distance and K-Means Clustering with Shape and Texture Feature Extraction,” J. Tech-E, vol. 5, no. 2, pp. 116–124, 2022.

A. Herdiansah, R. I. Borman, D. Nurnaningsih, A. A. J. Sinlae, and R. R. Al Hakim, “Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, pp. 388–395, 2022, doi: 10.30865/jurikom.v9i1.3846.

H. Mayatopani, R. I. Borman, W. T. Atmojo, and A. Arisantoso, “Classification of Vehicle Types Using Backpropagation Neural Networks with Metric and Ecentricity Parameters,” J. Ris. Inform., vol. 4, no. 1, pp. 65–70, 2021, doi: 10.34288/jri.v4i1.293.

R. I. Borman, B. Priopradono, and A. R. Syah, “Klasifikasi Objek Kode Tangan pada Pengenalan Isyarat Alphabet Bahasa Isyarat Indonesia (Bisindo),” in Seminar Nasional Informatika dan Aplikasinya (SNIA), 2017, no. September, pp. 1–4.

R. I. Borman, R. Napianto, N. Nugroho, D. Pasha, Y. Rahmanto, and Y. E. P. Yudoutomo, “Implementation of PCA and KNN Algorithms in the Classification of Indonesian Medicinal Plants,” in ICOMITEE 2021, 2021, pp. 46–50.

D. A. Anggoro and P. I. Rahmatullah, “The Implementation of Subspace Outlier Detection in K-Nearest Neighbors to Improve Accuracy in Bank Marketing Data,” Int. J. Emerg. Trends Eng. Res., vol. 8, no. 2, pp. 545–550, 2020.

R. I. Borman, F. Rossi, Y. Jusman, A. A. A. Rahni, S. D. Putra, and A. Herdiansah, “Identification of Herbal Leaf Types Based on Their Image Using First Order Feature Extraction and Multiclass SVM Algorithm,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2021, pp. 12–17.

K. Saputra S and M. I. Perangin-Angin, “Klasifikasi Tanaman Obat Berdasarkan Ekstraksi Fitur Morfologi Daun Menggunakan Jaringan Syaraf Tiruan,” J. Inform., vol. 5, no. 2, pp. 169–174, 2018, doi: 10.31311/ji.v5i2.3770.

Z. Azmi, “Artificial Neural Network Model For Wind Mill,” Int. J. Eng. Sci. InformationTechnology, vol. 1, no. 3, pp. 40–48, 2021.

F. Izhari, M. Zarlis, and S. Sutarman, “Analysis of backpropagation neural neural network algorithm on student ability based cognitive aspects,” 2020. doi: 10.1088/1757-899X/725/1/012103.

V. V. Nurdiansyah, I. Cholissodin, and P. P. Adikara, “Klasifikasi Penyakit Tuberkulosis (TB) menggunakan Metode Extreme Learning Machine (ELM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 5, pp. 1387–1393, 2020.

S. Al-hammouri, M. Fora, and M. Ibbini, “Extreme Learning Machine for Melanoma Classification,” in Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT) 2021, 2021, pp. 114–119.

Z. A. Fikriya, M. I. Irawan, and S. Soetrisno, “Implementasi Extreme Learning Machine untuk Pengenalan Objek Citra Digital,” J. Sains dan Seni ITS, vol. 6, no. 1, 2017.

R. R. Wahid, F. T. Anggraeny, and B. Nugroho, “Implementasi Metode Extreme Learning Machine untuk Klasifikasi Tumor Otak pada Citra Magnetic Resonance Imaging,” in Prosiding Seminar Nasional Informatika Bela Negara (SANTIKA), 2020, vol. 1, pp. 16–20.

D. Firdaus and D. Setiabudi, “Pengenalan Signature (Tanda Tangan) Menggunakan Extrime Learning Machine (ELM),” J. Arus Elektro Indones., vol. 6, no. 3, pp. 78–81, 2020.

X. Lyu, “Oil Spill Detectio Based on Features and Extreme Learning Machine Method in SAR Images,” in 3rd International Conference on Mechanical, Control and Computer Engineering, 2018, pp. 559–563. doi: 10.1109/ICMCCE.2018.00123.

M. Megawati, M. K. Nisa, and M. Arsyad, Aneka Tanaman Berkhasiat Obat. GUEPEDIA, 2021. [Online]. Available: https://books.google.co.id/books?id=rAVMEAAAQBAJ

A. Mulyanto, W. Jatmiko, P. Mursanto, P. Prasetyawan, and R. I. Borman, “A New Indonesian Traffic Obstacle Dataset and Performance Evaluation of YOLOv4 for ADAS,” J. ICT Res. Appl., vol. 14, no. 3, pp. 286–298, 2021.

A. Mulyanto, R. I. Borman, P. Prasetyawan, W. Jatmiko, P. Mursanto, and A. Sinaga, “Indonesian Traffic Sign Recognition For Advanced Driver Assistent (ADAS) Using YOLOv4,” in International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 2020, pp. 520–524.

F. Sun, X. Hu, H. Lin, M. J. Clifford, R. Zhang, and B. Xin, “Feature extraction Hue , Saturation , Value (HSV) and Gray Level Cooccurrence Matrix (GLCM) for identification of woven fabric motifs in South Central Timor Regency Feature extraction Hue , Saturation , Value ( HSV ) and Gray Level Cooccurrence Matrix ( G,” in ICEST 2020, 2021, pp. 1–9. doi: 10.1088/1742-6596/2017/1/012010.

R. I. Borman, I. Ahmad, and Y. Rahmanto, “Klasifikasi Citra Tanaman Perdu Liar Berkhasiat Obat Menggunakan Jaringan Syaraf Tiruan Radial Basis Function,” Bull. Informatics Data Sci., vol. 1, no. 1, pp. 6–13, 2022.

R. I. Borman and B. Priyopradono, “Implementasi Penerjemah Bahasa Isyarat Pada Bahasa Isyarat Indonesia (BISINDO) Dengan Metode Principal Component Analysis (PCA),” J. Inform. J. Pengemb. IT, vol. 03, no. 1, pp. 103–108, 2018.

K. Saputra S and M. I. Perangin-angin, “Ekstraksi Fitur Morfologi Daun Sebagai Penciri Pada Tanaman Obat,” in Seminar Nasional Aplikasi Teknologi Informasi (SNATi) 2018, 2018, pp. 13–17.

P. P. Winangun, I. M. O. Widyantara, and R. S. Hartati, “Pendekatan Diagnostik Berbasis Extreme Learning Machine dengan Kernel Linear untuk Mengklasifikasi Kelainan Paru-Paru,” Maj. Ilm. Teknol. Elektro, vol. 19, no. 1, p. 83, 2020, doi: 10.24843/mite.2020.v19i01.p12.

Z. Abidin, R. I. Borman, F. B. Ananda, P. Prasetyawan, F. Rossi, and Y. Jusman, “Classification of Indonesian Traditional Snacks Based on Image Using Convolutional Neural Network (CNN) Algorithm,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2022, pp. 18–23.

B. Juba and H. S. Le, “Precision-Recall versus Accuracy and the Role of Large Data Sets,” in The Thirty-Third AAAI Conference on Artificial Intelligence, 2019, pp. 4039–4048.

R. I. Borman, Y. Fernando, and Y. Egi Pratama Yudoutomo, “Identification of Vehicle Types Using Learning Vector Quantization Algorithm with Morphological Features,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 2, pp. 339–345, 2022, doi: 10.29207/resti.v6i2.3954.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Citra Jenis Daun Berkhasiat Obat Menggunakan Algoritma Jaringan Syaraf Tiruan Extreme Learning Machine

Dimensions Badge
Article History
Submitted: 2022-11-25
Published: 2022-12-05
Abstract View: 4000 times
PDF Download: 3798 times
Section
Articles