Sistem Pakar Deteksi Covid-19 Dengan Lie Detection Menggunakan Metode Circle Hough Transform


Keywords: Healthcare Application; Covid 19; Circle Hough Transform; Lie Detection; Expert System

Abstract

The number of health workers infected with Covid-19 in Indonesia continues to grow amid the coronavirus pandemic. Not only doctors, nurses and other medical support staff have been exposed to Covid-19. To date, IDI has recorded more than 180 health workers who have died from Corona. Health workers are dying because of a lack of Personal Protective Equipment (PPE) and fatigue. Prevention of direct contact between asymptomatic patients and health workers is a way to prevent health workers from contracting COVID-19. An expert system for diagnosing COVID-19 with lie detection is proposed to be used for patients who wish to seek treatment at a health center before they meet face-to-face with health workers. Several previous studies have proven that the certainty method can be used to diagnose COVID-19 with an accuracy of up to 90%, provided that the patient answers questions honestly. In this study, control questions and pupil detection were added using the circle hard transform to find out whether patients who wanted treatment did not lie when answering questions about symptoms of exposure to Covid, travel history and family history of exposure to Covid. The combination of an expert system and lie detection is expected to be the first protective alternative for health workers from asymptomatic patients. Based on the results of the application testing carried out, it can be seen that the movement of the patient's pupils when answering questions.

Downloads

Download data is not yet available.

References

C. Indonesia, “IDI: 184 Tenaga Kesehatan Meninggal Selama Pandemi Corona,” CNN Indonesia, 2020. https://www.cnnindonesia.com/nasional/20200907133513-20-543596/idi-184-tenaga-kesehatan-meninggal-selama-pandemi-corona (accessed May 01, 2022).

M. Irham, “Covid-19 menyebabkan 115 dokter Indonesia meninggal, IDI keluarkan pedoman standar perlindungan khusus,” BBC News Indonesia, 2020. https://www.bbc.com/indonesia/indonesia-54156899 (accessed Dec. 05, 2022).

I. I. Sinuraya, A. Triayudi, and I. D. Sholihati, “Covid-19 Diagnosis Based Android Mobile Application using Certainty Factor Method,” J. Ilm. SISFOTENIKA, vol. 10, no. 2, pp. 203–213, 2020.

M. F. Suryana, F. Fauziah, and R. T. K. Sari, “Implementasi Sistem Pakar Menggunakan Metode Certainty Factor Untuk Mendiagnosa Dini Corona Virus Desease (COVID-19),” J. Media Inform. Budidarma, vol. 4, no. 3, p. 559, 2020, doi: 10.30865/mib.v4i3.2132.

S. H. Hartono, “46 Tenaga Medis Rumah Sakit Kariadi Semarang Serempak Positif Virus Corona Akibat Satu Pasien Berbohong,” GridHEALTH.id.

P. Kurniati, “Kasus-kasus Kebohongan Pasien Corona di Sejumlah Daerah, Dilakukan Kuli Bangunan dan Petugas Medis Terinfeksi,” Kompas.com, 2020.

S. A. Nursastri, “Mengapa Pasien Covid-19 Kerap Menyangkal dan Berbohong?,” Kompas.com, 2020.

F. V. Nurçin, E. Imanov, A. Işin, and D. U. Ozsahin, “Lie detection on pupil size by back propagation neural network,” Procedia Comput. Sci., vol. 120, pp. 417–421, 2017, doi: 10.1016/j.procs.2017.11.258.

A. K. Webb et al., “Eye movements and pupil size reveal deception in computer administered questionnaires,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5638 LNAI, pp. 553–562, 2009, doi: 10.1007/978-3-642-02812-0_64.

R. H. Nugroho, M. Nasrun, and C. Setianingsih, “Lie detector with pupil dilation and eye blinks using hough transform and frame difference method with fuzzy logic,” 2017 Int. Conf. Control. Electron. Renew. Energy Commun., 2017.

J. E. Paik and L. M. Van Swol, “Justifications and Questions in Detecting Deception,” Gr. Decis. Negot., vol. 26, no. 6, pp. 1041–1060, 2017, doi: 10.1007/s10726-017-9536-8.

L. Warmelink, A. Subramanian, D. Tkacheva, and N. McLatchie, “Unexpected questions in deception detection interviews: Does question order matter?,” Leg. Criminol. Psychol., vol. 24, no. 2, pp. 258–272, 2019, doi: 10.1111/lcrp.12151.

V. Gonzales, “Lie Detection and Pupil Dilation,” Florida State University, 2018.

J. J. Walczyk, D. A. Griffith, R. Yates, S. R. Visconte, B. Simoneaux, and L. L. Harris, “LIE Detection by Inducing Cognitive Load: Eye Movements and Other Cues to the False Answers of ‘Witnesses’ to Crimes,” Crim. Justice Behav., vol. 39, no. 7, pp. 887–909, 2012, doi: 10.1177/0093854812437014.

J. J. Walczyk, K. T. Mahoney, D. Doverspike, and D. A. Griffith-Ross, “Cognitive lie detection: Response time and consistency of answers as cues to deception,” J. Bus. Psychol., vol. 24, no. 1, pp. 33–49, 2009, doi: 10.1007/s10869-009-9090-8.

R. Lionnie, R. C. Ramadhan, A. S. Rosyadi, M. Jusoh, and M. Alaydrus, “Performance analysis of various types of surface crack detection based on image processing,” Sinergi, vol. 26, no. 1, pp. 1–6, 2022, doi: 10.22441/sinergi.2022.1.001.

A. Kurniawan, J. Haidi, M. K. A. Rosa, and J. Suryanata, “Analisis Potensi Kebohongan dengan Galvanic Skin Response Dan Diameter Pupil Mata,” J. Amplif. J. Ilm. Bid. Tek. Elektro Dan Komput., vol. 9, no. 2, pp. 34–42, 2019, doi: 10.33369/jamplifier.v9i2.15381.

K. E. Setyaputri, A. Fadlil, and S. Sunardi, “Comparative Analysis of Certainty Factor Method and Bayes Probability Method on ENT Disease Expert System,” Sci. J. Informatics, vol. 5, no. 2, pp. 205–212, 2018, doi: 10.15294/sji.v5i2.16151.

E. P. Gunawan and R. Wardoyo, “An Expert System Using Certainty Factor for Determining Insomnia Acupoint,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 12, no. 2, p. 119, 2018, doi: 10.22146/ijccs.26328.

D. A. Fauzy, I. Iskandar, J. Rahmadhan, and R. Priambodo, “Aplikasi Bengkel Motor Dengan Sistem Pakar Menggunakan Metode Forward Chaining,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 1, pp. 89–96, 2020, doi: 10.32736/sisfokom.v9i1.783.

S. Rahayu, A. J. T. Gumilang, O. P. Bharodin, and F. Faturahman, “Metode Entropy-SAW dan Metode Entropy-WASPAS dalam Menentukan Promosi Jabatan Bagi Karyawan Terbaik di Cudo Communications,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 5, p. 1069, 2020, doi: 10.25126/jtiik.2020712888.

P. Viola and M. Jones, “Robust real-time face detection,” Int. J. Comput. Vis., vol. 57, no. 2, pp. 137–154, 2004.

P. Viola and M. Jones, “Rapid Object Detection Using a Boosted Cascade of Simple Features,” Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001.

B. Priambodo, Y. Jumaryadi, S. Rahayu, D. Firdaus, M. Sobri, and Z. P. Putra, “Prediction of Drug Users Based on Facial Scratching Pattern,” Int. J. online Biomed. Eng., vol. 17, no. 3, pp. 141–150, 2021, doi: 10.3991/ijoe.v17i03.17351.

A. Ashraf et al., “Affective Computing for Visual Emotion Recognition Using Convolutional Neural Networks,” in Advances in Intelligent Systems and Computing, 2021, p. 11.

V. Ayumi, “Pose-based human action recognition with Extreme Gradient Boosting,” Proc. - 14th IEEE Student Conf. Res. Dev. Adv. Technol. Humanit. SCOReD 2016, 2017, doi: 10.1109/SCORED.2016.7810099.

M. Soltany, S. Zadeh, and H. Pourreza, “Fast and accurate pupil positioning algorithm using circular Hough transform and gray projection,” 2011 Int. Conf. Comput. Commun. Manag., vol. 5, pp. 556–561, 2011.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Sistem Pakar Deteksi Covid-19 Dengan Lie Detection Menggunakan Metode Circle Hough Transform

Dimensions Badge
Article History
Submitted: 2022-11-11
Published: 2022-12-06
Abstract View: 233 times
PDF Download: 193 times
Section
Articles