Implementasi Algoritma K-Nearest Neighbor Dalam Mendiagnosis Kurap Pada Kucing
Abstract
Ringworm is an infectious disease caused by keratinophilic fungi on the surface of the skin or other parts of tissues that contain keratin (fur, nails, hair, and horns) in animals and humans. Some fungal species are zoonotic because infected animals can be a source of transmission to humans and vice versa. This disease is often found in domesticated animals and is the oldest mycotic disease in the world. This skin disease is called ringworm because it is thought to be caused by worms and because the symptoms begin with inflammation of the skin's surface which if left unchecked will enlarge to form a ring like circle. The K-Nearest Neighbor (KNN) algorithm is a method for classifying new objects. KNN is a supervised learning algorithm, where the results of new query instances are classified according to the majority of categories in KKN. The class that appears the most is the class resulting from the classification. Nearest Neighbor is an approach to calculate the proximity between the new case and the old case, which is based on matching the weights of a number of existing features. This study aims to make it easier for patients to know the health condition of their pet cat.
Downloads
References
I. P. E. Wilar and K. D. Ambarwati, “Hubungan Antara Human Animal Bond dengan Tingkat Stres Pada Pegawai Negeri Sipil (PNS) yang Memiliki Hewan Peliharaan,” J. Psikogenes., vol. 9, no. 2, pp. 146–158, 2022, doi: 10.24854/jps.v9i2.1881.
M. Natasya, Ridi Arif, Risa Tiuria, Didit Triatmojo, and Aurilia Hemas Adytia Wardaningrum, “Prevalensi Kecacingan pada Anjing dan Kucing di Klinik Smilevet Kelapa Gading Periode Januari 2020 - Januari 2021,” Acta Vet. Indones., vol. 9, no. 3, pp. 215–222, 2021, doi: 10.29244/avi.9.3.215-222.
S. A. Simanjorang; and V. Karnadi, “SISTEM PAKAR DIAGNOSIS PENYAKIT KUCING DENGAN METODE FORWARD CHAINING BERBASIS ANDROID,” Comasie, vol. 3, no. 3, pp. 21–30, 2020.
D. Cahyanti, A. Rahmayani, and S. A. Husniar, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, 2020, doi: 10.33096/ijodas.v1i2.13.
R. Zubaedah, F. Xaverius, H. Jayawardana, and S. H. Hidayat, “Comparing euclidean distance and nearest neighbor algorithm in an expert system for diagnosis of diabetes mellitus,” Enfermería Clínica, vol. 30, pp. 374–377, Mar. 2020, doi: 10.1016/j.enfcli.2019.07.121.
R. A. Ramadhani, R. Helilintar, and S. Rochana, “Perancangan Sistem Diagonosa Penyakit Hepatitis Menggunakan Metode Knn,” Ilk. J. Ilm., vol. 9, no. 2, pp. 145–152, 2017, doi: 10.33096/ilkom.v9i2.129.145-152.
T. Tri Saputra Sibarani and C. Author, “Analysis K-Nearest Neighbors (KNN) in Identifying Tuberculosis Disease (Tb) By Utilizing Hog Feature Extraction,” Int. Comput. Sci. Inf. Technol. JournalISSN, vol. 1, no. 1, pp. 33–38, 2020.
K. U. Syaliman, E. B. Nababan, and O. S. Sitompul, “Improving the accuracy of k-nearest neighbor using local mean based and distance weight,” J. Phys. Conf. Ser., vol. 978, no. 1, 2018, doi: 10.1088/1742-6596/978/1/012047.
E. Budianita, J. Jasril, and L. Handayani, “Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbour Untuk Membangun Aplikasi Pembeda Daging Sapi dan Babi Berbasis Web,” J. Sains dan Teknol. Ind., vol. 12, no. Vol 12, No 2 (2015): Juni 2015, pp. 242–247, 2015.
W. Xing and Y. Bei, “Medical Health Big Data Classification Based on KNN Classification Algorithm,” IEEE Access, vol. 8, pp. 28808–28819, 2020, doi: 10.1109/ACCESS.2019.2955754.
M. Bilal, H. Israr, M. Shahid, and A. Khan, “Sentiment classification of Roman-Urdu opinions using Naïve Bayesian, Decision Tree and KNN classification techniques,” J. King Saud Univ. - Comput. Inf. Sci., vol. 28, no. 3, pp. 330–344, 2016, doi: 10.1016/j.jksuci.2015.11.003.
Minarni, I. Warman, and Yuhendra, “Implementation of Case-Based Reasoning and Nearest Neighbor Similarity for Peanut Disease Diagnosis,” J. Phys. Conf. Ser., vol. 1196, no. 1, p. 012053, Mar. 2019, doi: 10.1088/1742-6596/1196/1/012053.
L. Tang, H. Pan, and Y. Yao, “K-nearest neighbor regression with principal component analysis for financial time series prediction,” ACM Int. Conf. Proceeding Ser., pp. 127–131, 2018, doi: 10.1145/3194452.3194467.
E. N. Shofia, R. R. M. Putri, and A. Arwan, “Sistem Pakar Diagnosis Penyakit Demam : DBD , Malaria dan Tifoid Menggunakan Metode K-Nearest Neighbor – Certainty Factor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 5, pp. 426–435, 2017.
F. Liantoni, “Klasifikasi Daun Dengan Perbaikan Fitur Citra Menggunakan Metode K-Nearest Neighbor,” J. Ultim., vol. 7, no. 2, pp. 98–104, 2016, doi: 10.31937/ti.v7i2.356.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Algoritma K-Nearest Neighbor Dalam Mendiagnosis Kurap Pada Kucing
Pages: 61-65
Copyright (c) 2022 Marsono Marsono, Asyahri Hadi Nasyuha, Saiful Nur Arif, Muhammad Zunaidi, Nur Yanti Lumban Gaol

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).