Klasifikasi Jenis Mangga Berdasarkan Tekstur Tulang Daun Menggunakan Metode Learning Vector Quantization (LVQ)
Abstract
Mango is a fruit plants that has the potential to be developed because it has a high level of genetic diversity. Mangoes vary in shape, size and color of the fruit, indicating a fairly wide genetic diversity. Of the many genetic diversity and types of society, there are still many who cannot distinguish them. This study builds an application to distinguish mango species based on the leaf bone structure where the feature extraction process uses the Learning Vector Quantization (LVQ) method. Then do the merging to produce a specific feature vector, then the classification calculation is carried out using the Euclidean Distance method to identify the type of mango fruit. The results of the study with the amount of training data as many as 6 images and testing data as much as 15 obtained system accuracy, with the calculation results, the remaining clusters are cluster 3 with a centroid value of R = 151.67 G = 145 and B = 153.33. From the test results with 2 scenarios, the mango golek type has low values, namely 50 and 60 because the mango golek type has less brightness than the other 2 types of mango.
Downloads
References
D. Hidayat, “Klasifikasi Jenis Mangga Bersarkan Bentuk dan Tekstur Daun Menggunakan Metode Convolutional Neural Network (CNN)“, Journal of Information Technology and Computer Science (INTECOMS) Volume 5 Nomor 1, Juni 2022
Sembiring, M. B., Rahmi, D., Maulina, M., Tari, V., Rahmayanti, R., & Suwardi, A. B, “Identifikasi Karakter Morfologi dan Sensoris Kultivar Mangga (Mangifera Indica L.) di Kecamatan Langsa Lama, Aceh, Indonesia”, Jurnal Biologi Tropis, 20(2), 2020
Asfiani, A., Samudin, S., & Madauna, I. S, “Karakteristik Mangga (Mangifera indica L.) Lokal Berdasarkan Ciri Morfologi Dan Anatomi”. AGROTEKBIS : E-JURNAL ILMU PERTANIAN, 7(5), 609 – 619, 2018
Siregar, “Statistika Terapan Untuk Perguruan Tinggi”. Jakarta: Prenadamedia Group, 2015
U. Sudibyo, D. P. Kusumaningrum, “OPTIMASI ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGKLASIFIKASIAN CITRA DAGING SAPI DAN DAGING BABI BERBASIS GLCM DAN HSV “, Jurnal SIMETRIS, Vol. 9 No. 1, 2018
A. D. Dongare, R. R. Kharde, and A. D. Kachare, “Introduction to Artificial Neural Network (ANN ) Methods,” Int. J. Eng. Innov. Technol., vol. 02, no. 01, pp. 189–194, 2012
M. S. Syarif, “Penerapan Algoritma Backprogation Untuk Menentukan Level Bonus Dan Score Bonus Pada Game Edukasi Nahwu Menggunakan Kartu Berbasis Android,” Universitas Islam Negeri Maulana Malik Ibrahim Malang, 2016
R. Meliawati, O. soesanto, and D. Jartini, “Penerapan Metode LVQ Pada Prediksi Jurusan di SMA PGRI 1 Banjarbaru “, Kumpulan jurnaL Ilmu Komputer (KLIK) Volume 04, No.01, 2016
Indradewi, I. G. A. A. D., and Ariantini, M. S, “Jaringan Syaraf Tiruan LVQ Berbasis Parameter HSV dalam Penentuan Uang Rupiah Palsu”, Jurnal Ilmiah Teknologi Informasi Asia, 13(1), 47–52, 2019
Harliana, S. Kirono, “Penerapan Learning Vector Quantization Dalam Memprediksi Jumlah Rumah Tangga Miskin “, Jurnal Sains dan Informatika p-ISSN: 2460-173X Volume 5, Nomor 2, November 2019 e-ISSN: 2598-5841 DOI: 10.34128/jsi.v5i2, 2019
Derisma, Firdaus, Yusya R. P, “Perancangan Ikat Pinggang Elektronik Untuk Tunanetra Menggunakan Mikrokontroller Dan Global Positioning System (Gps) Pada Smartphone Android”. Jurnal Teknik Elektro ITP, vol.5, no.2, pp.130-136, 2016
Mustofa, Zaenal, Suasana, I. Saufik, “Algoritma Clustering K-Medoids Pada EGorvernment Bidang Information dan Communication Technology Dalam Penentuan Status Edgi”, Jurnal Teknologi Informasi dan Komunikasi, vol.9, no.1, pp.1-10, 2018
S. Rahayu, R. Fanni, and K. Bima, “Perbandingan Haversine Formula dan Euclidean Distance dalam Pencarian Jarak Terdekat Rumah Penampungan Hewan (Shelter)”, JURNAL ILMIAH FIFO DOI: http://dx.doi.org/10.22441/fifo.2022.v14i1.003 P-ISSN 2085-4315 / E-ISSN 2502-8332 Volume XIV/No.1, 2022
A. W. Rahmadani1, A. I. Jaya, dan N. Nacong, “PREDIKSI PENYAKIT TUBERCULOSIS PARU (TB PARU) MENGGUNAKAN METODE LEARNING VEKTOR QUANTIZATION (LVQ) “, Jurnal Ilmiah Matematika dan Terapan Volume 15 Nomor 1, Juni 2018
Edwin, K.R. Retno, “Penerapan Metode Learning Vector Quantization untuk Mendiagnosa Penyakit Gangguan Lambung”, Jurnal Telematika, vol. 13 no. 2, Institut Teknologi Harapan Bangsa, Bandung p-ISSN: 1858-2516 e-ISSN: 2579-3772 135, 2018
Z.A. Leleury, S.N. Aulele, “Perancangan Sistem Diagnosa Penyakit Saluran Pernapasan Menggunakan Metode Learning Vector Quantization (LVQ)“, Jurnal Matematika Integratif, ISSN 1412-6184, Volume 12 No 1, 2016.
A. R. Damanik, “Penerapan Learning Vector Quantization (LVQ) Untuk Mengklasifikasikan Tenaga Ahli IT (Studi Kasus: PT. Cita Kreasi Latena)”, Jurnal Pancabudi, Volume 2, No 2, 2020
E. Setyowati dan S. Mariani, “Penerapan JST dengan metode learning vector quantization untuk klasifikasi penyakit ISPA”, Unnes Journal of Mathematics, Vol. 10, No.1 , 2021
B. P. Tomasouw, “Penerapan Metode Learning Vector Quantization (LVQ) untuk Mendeteksi Penyalahgunaan Narkoba”, Contemporary Mathematics and Applications (ConMathA), Vol.3, No1, 2021
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Jenis Mangga Berdasarkan Tekstur Tulang Daun Menggunakan Metode Learning Vector Quantization (LVQ)
Pages: 220-228
Copyright (c) 2022 Valian Yoga Pudya Ardhana, Joni Saputra, M Afriansyah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).