Penerapan Algoritma K-Means Pada Pemetaan Kemampuan Penggunaan Teknologi Informasi Remaja dan Dewasa di Indonesia
Abstract
In modern-day Indonesia, having access to various forms of technology is regarded as crucial. This is because the IT skills gap will only grow worse if the government does not act swiftly to make technology more accessible to the general public. PISA suggests that schools may gain much more from incorporating IT into their curriculum if they did so. The goal of this research is to establish whether or not there are notable variations in the level of knowledge in information technology across the different provinces in Indonesia. Official data from the Central Statistics Agency for 2019-2021, including information on the number of adolescents and adults aged 15-59 with abilities in the field of ICT at the provincial level, is used in the clustering calculation. The K-means algorithm is one unsupervised learning technique for clustering data into collections with other instances that share similar properties. The results showed that the seventh cluster had the lowest DBI value of the three examined, coming in at -0.357. Cluster 0 has the lowest average percentage of the population with IT skills, at 29.32%. Only in Papua Province will you find this particular zero cluster.
Downloads
References
M. C. M. Bravo, C. S. Chalezquer, and J. Serrano-Puche, “Meta-framework of digital literacy: Comparative analysis of 21st century skills frameworks,” Revista Latina de Comunicacion Social, vol. 2021, no. 79, 2021, doi: 10.4185/RLCS-2021-1508.
E. Y. Wijaya, D. A. Sudjimat, and A. Nyoto, “Transformasi Pendidikan Abad 21 sebagai Tuntutan Pengembangan Sumber Daya Manusia di Era Global,” Prosiding Seminar Nasional Pendidikan Matematika, vol. 1, 2016.
S. A. Garba, Y. Byabazaire, and A. H. Busthami, “Toward the use of 21st century teaching-learning approaches: The trend of development in Malaysian schools within the context of Asia Pacific,” International Journal of Emerging Technologies in Learning, vol. 10, no. 4, 2015, doi: 10.3991/ijet.v10i4.4717.
M. Megawati, Y. Andayani, and E. Junaidi, “Hubungan Kesiapan Teknologi Informasi Dan Komunikasi (TIK) Dengan Motivasi Belajar Kimia Siswa,” Chemistry Education Practice, vol. 2, no. 2, 2019, doi: 10.29303/cep.v2i2.1414.
Petra Wiyakti Bodrogini, “Preparing ICT Skills for Digital Economy: Indonesia within the ASEAN context,” Jakarta, Mar. 2018.
The SMERU Research Institute, Digital Skills Landscape in Indonesia. Jakarta: The SMERU Research Institute, 2022.
Badan Pusat Statistik, “Proporsi Remaja Dan Dewasa Usia 15-59 Tahun Dengan Keterampilan Teknologi Informasi Dan Komputer (TIK) Menurut Provinsi (Persen), 2019-2021,” 2022.
B. Setio and P. Prasetyaningrum, “PENERAPAN DATA MINING DALAM MENGELOMPOKKAN KUNJUNGAN WISATAWAN DI KOTA YOGYAKARTA MENGGUNAKAN METODE K-MEANS,” Journal of Computer Science and Technology (JCS-TECH), vol. 1, no. 1, 2021, doi: 10.54840/jcstech.v1i1.9.
R. Watrianthos, W. A. Ritonga, A. Rengganis, A. Wanto, and M. Isa Indrawan, “Implementation of PROMETHEE-GAIA Method for Lecturer Performance Evaluation,” J Phys Conf Ser, vol. 1933, no. 1, p. 012067, Jun. 2021, doi: 10.1088/1742-6596/1933/1/012067.
D. Abdullah, S. Susilo, A. S. Ahmar, R. Rusli, and R. Hidayat, “The application of K-means clustering for province clustering in Indonesia of the risk of the COVID-19 pandemic based on COVID-19 data,” Qual Quant, vol. 56, no. 3, 2022, doi: 10.1007/s11135-021-01176-w.
I. Shaik, S. S. Nittela, T. Hiwarkar, and S. Nalla, “K-means clustering algorithm based on E-commerce big data,” International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 11, 2019, doi: 10.35940/ijitee.K2121.0981119.
R. Watrianthos, M. Bobbi Kurniawan, Kusmanto, S. Budiman, and B. Ulya, “Mapping of Traffic Accidents in Labuhanbatu Regency using GIS Support,” J Phys Conf Ser, vol. 1566, no. 1, 2020, doi: 10.1088/1742-6596/1566/1/012104.
K. P. Sinaga and M. S. Yang, “Unsupervised K-means clustering algorithm,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2988796.
N. Azis et al., “Mapping study using the unsupervised learning clustering approach,” IOP Conf Ser Mater Sci Eng, vol. 1088, no. 1, p. 012005, Feb. 2021, doi: 10.1088/1757-899X/1088/1/012005.
C. Yuan and H. Yang, “Research on K-Value Selection Method of K-Means Clustering Algorithm,” J Multidisciplinary Scientific Journal, vol. 2, no. 2, pp. 226–235, Jun. 2019, doi: 10.3390/j2020016.
Samsir et al., “Naives Bayes Algorithm for Twitter Sentiment Analysis,” J Phys Conf Ser, vol. 1933, no. 1, p. 012019, Jun. 2021, doi: 10.1088/1742-6596/1933/1/012019.
M. Nasution, D. Irmayani, R. Watrianthos, S. Suryadi, and I. R. Munthe, “Comparative analysis of data mining using the rought set method with K-means method,” International Journal of Scientific and Technology Research, vol. 8, no. 5, 2019.
F. Rahman, I. I. Ridho, M. Muflih, S. Pratama, M. R. Raharjo, and A. P. Windarto, “Application of Data Mining Technique using K-Medoids in the case of Export of Crude Petroleum Materials to the Destination Country,” IOP Conf Ser Mater Sci Eng, vol. 835, no. 1, p. 012058, Apr. 2020, doi: 10.1088/1757-899X/835/1/012058.
R. Maliva and T. Missimer, “Geographic Information Systems,” in Environmental Science and Engineering, 2012. doi: 10.1007/978-3-642-29104-3_19.
D. Farkas, B. Hilton, J. Pick, H. Ramakrishna, A. Sarkar, and N. Shin, “A tutorial on geographic information systems: A ten-year update,” Communications of the Association for Information Systems, vol. 38, no. 1, 2016, doi: 10.17705/1CAIS.03809.
Muttaqin, M. Zuhril, and A. Irfan, “Perancangan sistem pemetaan dan pendataan populasi penduduk miskin di Kota Banda Aceh menggunakan aplikasi Quantum GIS,” Informatics and Computer Science, vol. 5, no. 1, 2019.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma K-Means Pada Pemetaan Kemampuan Penggunaan Teknologi Informasi Remaja dan Dewasa di Indonesia
Pages: 45-50
Copyright (c) 2022 Ronal Watrianthos, Reti Handayani, Ade Fitrah Putra Akhir, Ambiyar Ambiyar, Unung Verawardina

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).