Pengaruh Kemiskinan, Pengangguran dan Inflasi Terhadap Pertumbuhan Ekonomi di Indonesia


  • Darsono Darsono * Mail Universitas Bina Bangsa, Serang, Indonesia
  • Asep Munir Hidayat Universitas Bina Bangsa, Serang, Indonesia
  • Billy Tejaarief Universitas Bina Bangsa, Serang, Indonesia
  • Kenedi Kenedi Universitas Bina Bangsa, Serang, Indonesia
  • Anti Wulan Agustini Universitas Bina Bangsa, Serang, Indonesia
  • (*) Corresponding Author
Keywords: Poverty; Unemployment; Inflation; Economic Growth; ARDL

Abstract

One of the main problems of Indonesia’s economy is the relatively low economic growth, which is often hampered by high levels of poverty, unemployment, and inflation. These conditions pose challenges in maintaining stability while promoting sustainable development. Economic growth is an important indicator in assessing the performance of a country’s development, which is influenced by various macroeconomic factors. This study aims to analyze the effect of poverty, unemployment, and inflation on Indonesia’s economic growth, both in the short run and long run. In addition, this research also identifies the adjustment mechanism through the error correction approach and analyzes the causal relationship among variables. The method used is secondary data analysis with a quantitative correlational approach. The model applied is the Autoregressive Distributed Lag (ARDL) based on time series data for the period 2014–2024, processed using EViews 12. The results show that in the long run, inflation has a negative and significant effect on economic growth, with a coefficient value of –0.421 and t-statistic 3.12 > t-table 2.06 at a 5% significance level. Unemployment also has a negative but insignificant effect with a coefficient of –0.178 (t-statistic 1.44 < t-table), while poverty shows no significant effect with a coefficient of –0.095 (t-statistic 1.12 < t-table). In the short run, no significant effect of the three variables on economic growth is found. The error correction term (ECT) value of –0.639 is significant at the 5% level, indicating an adjustment process toward long-run equilibrium. The Granger causality analysis also indicates a bidirectional relationship between inflation and economic growth. These findings emphasize that inflation is a key variable that must be controlled to maintain economic stability and foster long-term growth. Meanwhile, poverty alleviation and unemployment reduction policies need to be strengthened in order to have a more tangible impact on achieving sustainable economic growth.

Downloads

Download data is not yet available.

References

Attouchi, M. (2021). An application of ARDL bounds testing approach to the estimation of level relationship between inflation, economic activity and oil price in Algeria. Journal of Advanced Research in Economics and Administrative Sciences, 2(1), 97–112. https://doi.org/10.55624/2382-004-001-010

Fadhlani, M. F., Irawan, T., & Priyarsono, D. S. (2024). Export diversification and economic growth in Indonesia: An ARDL model analysis. Jurnal Ekonomi Pembangunan, 22(2), 201–212. https://doi.org/10.29259/jep.v22i2.23197

Fitriah Amanda, Y., Sunarto, A., & Harpepen, A. (2025). Pengaruh inflasi dan kemiskinan terhadap pertumbuhan ekonomi dalam perspektif ekonomi Islam di Indonesia tahun 1992–2024. Jurnal Ekonomika dan Bisnis (JEBS), 5(1), 410–416. https://doi.org/10.47233/jebs.v5i1.2667

Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424–438. https://doi.org/10.2307/1912791

Ananda, I. A. (2022). Analisis indikator fundamental daerah di Kalimantan Barat: Pertumbuhan penduduk dan pertumbuhan ekonomi tahun 2019–2020. Southeast Asia Journal of Graduate of Islamic Business and Economics, 1(1), 58–66. https://doi.org/10.37567/sajgibe.v1i1.706

Kim, H.-Y. (2023). Statistical notes for clinical researchers: Simple linear regression 3 – Residual analysis. Restorative Dentistry & Endodontics, 44(1), 1–8. https://doi.org/10.5395/rde.2023.44.e11

Kripfganz, S., & Schneider, D. C. (2023). ardl: Estimating autoregressive distributed lag and equilibrium correction models. The Stata Journal: Promoting Communications on Statistics and Stata, 23(4), 983–1019. https://doi.org/10.1177/1536867X231212434

Montenegro, A. (2019). The ARDL bounds cointegration test: Tips for application and pretesting. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3425994

Salsabila, F., & Amri, K. (2023). Pengaruh inflasi dan pengangguran terhadap pertumbuhan ekonomi di Indonesia. Jurnal Ekonomi Manajemen dan Sekretari, 8(2), 94–103. https://doi.org/10.35870/jemensri.v8i2.3041

Shamaan, N. A., Shukor, M. S., Masdor, N. A., Sabullah, M. K., & Shukor, M. Y. (2022). Testing the normality of residuals on regression model for the growth of Moraxella sp. B on monobromoacetic acid. Bulletin of Environmental Science and Sustainable Management, 3(1), 16–18. https://doi.org/10.54987/bessm.v3i1.263

Nurajizah, S. A., Allena, S., Utama, R., & Kurniawan, M. (2024). Analisis pengaruh nilai tukar dan inflasi terhadap pertumbuhan ekonomi Indonesia tahun 2014–2023. SANTRI: Jurnal Ekonomi dan Keuangan Islam, 2(3), 229–240. https://doi.org/10.61132/santri.v2i3.645

Wang, L., Zhang, J., & Feng, Y. (2020). Study on severity and influencing factors of injury at intersections. Proceedings of the 5th International Symposium on Social Science (ISSS 2019). https://doi.org/10.2991/assehr.k.200312.001

Basrowi, R. W., Sastroasmoro, S., Sulistomo, A. W., Bardosono, S., Hendarto, A., Soemarko, D. S., Sungkar, A., Khoe, L. C., & Vandenplas, Y. (2018). Challenges and supports of breastfeeding at workplace in Indonesia. Pediatric Gastroenterology, Hepatology & Nutrition, 21(4), 248–256. https://doi.org/10.5223/pghn.2018.21.4.248

Bauer, D. (2023). Information-criterion-based lag length selection in vector autoregressive approximations for I(2) processes. Econometrics, 11(2), 11. https://doi.org/10.3390/econometrics11020011

Binta, F., Leone Talatu Jalloh, S., & Bah, F. B. (2023). The effect of inflation and unemployment on economic growth: Evidence from Sierra Leone. Journal of Economics, 1(117666), 1–15.

Burgess, M., Enzle, M. E., & Morry, M. (2000). The social psychological power of photography: Can the image-freezing machine make something of nothing? European Journal of Social Psychology, 30(5), 613–630. https://doi.org/10.1002/1099-0992(200009/10)30:5

Cardoso, F. C., Berri, R. A., Lucca, G., Borges, E. N., & Mattos, V. L. D. de. (2023). Normality tests: A study of residuals obtained on time series tendency modeling. Exacta, 23(1), 134–158. https://doi.org/10.5585/2023.22928

Chen, P., & Semmler, W. (2024). Inflation: Demand pull or cost push? A Markov switching approach. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4692473

Firda, F. S., Ma’ruf, M. F., Yuliana, I., & Rahayu, Y. S. (2024). Pengaruh inflasi dan angka pengangguran terhadap pertumbuhan ekonomi melalui tingkat kemiskinan 7 kota/kabupaten di Jawa Timur. Al-Kharaj: Jurnal Ekonomi, Keuangan & Bisnis Syariah, 6(6), 3764–3776. https://doi.org/10.47467/alkharaj.v6i6.1191

Farsio, F., & Quade, S. (2003). An empirical analysis of the relationship between GDP and unemployment. Humanomics, 19(3), 1–6. https://doi.org/10.1108/eb018884

Fordellone, M., Schiattarella, P., Nicolao, G., Signoriello, S., & Chiodini, P. (2025). Decision rules in frequentist and Bayesian hypothesis testing: P-value and Bayes factor. International Journal of Public Health, 70, 1608258. https://doi.org/10.3389/ijph.2025.1608258


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Pengaruh Kemiskinan, Pengangguran dan Inflasi Terhadap Pertumbuhan Ekonomi di Indonesia

Dimensions Badge
Article History
Submitted: 2025-08-17
Published: 2025-10-06
Abstract View: 1146 times
PDF Download: 700 times
Section
Articles