Analisis Sentimen Terhadap Ulasan Google Play Store Aplikasi Lazada, Shopee, dan Tokopedia Menggunakan Algoritma IndoBERT
Abstract
The growth of e-commerce has generated many user reviews, which are an important source for understanding consumer satisfaction and perceptions. However, manual analysis of unstructured reviews that use informal language is ineffective. In addition, conventional sentiment analysis approaches are often unable to capture the linguistic variations of the Indonesian language. This study uses the IndoBERT contextual language model to classify the sentiment of e-commerce application reviews on Shopee, Tokopedia, and Lazada. Data was collected through web scraping, amounting to 12,000 data points, with 4,000 for each application, labeled based on ratings, processed through preprocessing stages, balanced using Random Oversampling, and trained for three-class sentiment classification. The evaluation showed an Macro F1-Score of 0.90, indicating strong performance across all sentiment classes, including minority classes. These results confirm the effectiveness of IndoBERT in handling data imbalance in Indonesian sentiment analysis.
Downloads
References
I. H. Kusuma and N. Cahyono, “Analisis Sentimen Masyarakat Terhadap Penggunaan E-Commerce Menggunakan Algoritma K-Nearest Neighbor,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 302–307, 2023, doi: 10.30591/jpit.v8i3.5734.
I. S. Milal, M. Hasanudin, M. A. N. Azhari, R. A. Nugraha, N. Agustina, and S. E. Damayanti, “Klasifikasi Teks Review Pada E-Commerce Tokopedia Menggunakan Algoritma SVM,” NARATIF J. Ilm. Nas. Ris. Apl. dan Tek. Inform., vol. 05, no. 01, pp. 34–45, 2023. [Online]. Available: https://naratif.utb-univ.ac.id/index.php/naratif/article/download/191/96.
T. Puspa, R. Sanjaya, A. Fauzi, A. Fitri, and N. Masruriyah, “Analisis Sentimen Ulasan Pada E-Commerce Shopee Menggunakan Algoritma Naive Bayes Dan Support Vector Machine,” INFOTECH J. Inform. Teknol., vol. 4, no. 2722–9386, pp. 16–26, 2023, doi: 10.37373/infotech.v4i1.422.
J. Loso, H. Susila, U. Najirah, and I. K. S. Satwika, “Transformasi Digital (Teori & Implementasi Menuju Era Society 5.0)”, E. Rianty, Ed.1 Bekasi, Indonesia: Son Pedia Publishing Indonesia, May 2024. [Online]. Available:https://www.researchgate.net/publication/380462238_TRANSFORMASI_DIGITAL_Teori_implementasi_Menuju_Era_Society_50
S. Adryan, N. Firman, and R. Aviv Yuniar, “Analisis sentimen aplikasi shopee, tokopedia, lazada dan blibli menggunakan leksikon dan random forest,” JITET (Jurnal Inform. dan Tek. Elektro Ter., vol. 12, no. 3, pp. 3576–3587, 2024, doi: 10.23960/jitet.v12i3S1.5155.
Steven and F. Indah, “Analisis Sentimen Membandingkan Pengguna Aplikasi E-Commerce Tokopedia Dan Shopee Menggunakan Algoritma Naive Bayes,” pp. 32–39, 2024. [Online]. Available: https://jurnal.ubd.ac.id/index.php/poters/article/view/3588.
A. G. F. N. Pramita, “Aplikasi Lazada Menggunakan Metode Naive Bayes,” J. Digit, vol. 14, no. 1, pp. 23–30, 2024, doi: 10.51920/jd.v14i1.362.
B. Z. Ramadhan, I. Riza, and I. Maulana, “Analisis Sentimen Ulasan Pada Aplikasi E-Commerce Dengan Menggunakan Algoritma Naïve Bayes,” J. Appl. Informatics Comput., vol. 6, no. 2, pp. 220–225, 2022, doi: 10.30871/jaic.v6i2.4725.
G. T. Fadilah, L. Muflikhah, and R. S. Perdana, “Analisis Sentimen Produk Hijab Pada E-Commerce Tokopedia Menggunakan Algoritma Support Vector,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 2, pp. 1–9, 2025. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/14390.
A. Fayola and R. Darianty, “Analisis Sentimen Ulasan Produk Kecantikan di Tokopedia Menggunakan IndoBERT,” ISAJ (Information Syst. Appl. Journal), vol. 01, no. 01, pp. 11–18, 2025, doi: https://doi.org/isaj.v1i1.1.
R. S. Nuraini, “Analisis Sentimen Pengguna Aplikasi Agoda Di Google Play Store Menggunakan Algoritma Naiva Bayes,” J. Inf. Syst. Manag., vol. 7, no. 1, pp. 24–29, 2025, doi: 10.24076/joism.2025v7i1.2066.
A. J. Putri, A. S. Syafira, and M. E. Purbaya, “Analisis Sentimen E-Commerce Lazada pada Jejaring Sosial Twitter Menggunakan Algoritma Support Vector Machine,” J. TRINISTIK, vol. 01, no. 1, pp. 16–21, 2022, doi: 10.20895/trinistik.v1i1.447.
M. Xanderina et al., “Analisis Sentimen Ulasan E-Commerce Shopee Pada Google Play Store Menggunakan Machine Learning,” J-ENSISTEC (Journal Eng. Sustain. Technol., vol. 10, no. 02, pp. 990–998, 2024, doi: 10.31949/jensitec.v10i02.9071.
E. A. Junita and R. R. Suryono, “Analisis sentimen hate speech mengenai calon wakil presiden indonesia menggunakan algoritma bert,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 4, pp. 2042–2053, 2024, doi: 10.29100/jipi.v9i4.5544.
A. V. Utomo, A. Setiawan, and M. Arifin, “Analisis Sentimen Ulasan Hijab Aulia dengan Metode Support Vector Machine untuk Kepuasan Pelanggan,” JUSIBI (JURNAL Sist. Inf. DAN E-BISNIS), vol. 7, no. 2655–7541, pp. 85–95, 2025, doi:10.54650/jusibi.v7i2.607.
I. Irma Surya Kumala, M. Yasin Aril, and S. Irvan Abraham, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine ( SVM ),” Jambura J. Electr. Electron. Eng., vol. 5, pp. 32–35, 2023, doi:10.37905/jjeee.v5i1.16830.
R. F. Rahmanda, Y. Sibaroni, and S. S. Prasetiyowati, “Effectiveness of Bi-GRU and FastText in Sentiment Analysis of Shopee App Reviews,” Rayhan Fadhil, Rahmanda Yuliant, Sibaroni Sri Suryani, Prasetiyowati, vol. 9, no. 1, pp. 444–454, 2025, doi:10.33395/sinkron.v9i1.14474.
M. F. Kono, I. N. Fajri, and Y. Pristyanto, “Public Sentiment Analysis on Corruption Issues in Indonesia Using IndoBERT Fine-Tuning , Logistic Regression , and Linear SVM,” J. Appl. Informatics Comput., vol. 9, no. 5, pp. 2616–2628, 2025, doi: 10.30871/jaic.v9i5.10537.
B. Eka, and S. Dewi, “Model Analisis Sentimen Pada Kendaraan Listrik Menggunakan Algoritma Indobertweet Dan Indobert,” ANTIVIRUS J. Ilm. Tek. Inform., vol. 19, no. 1, pp. 169–179, 2025, doi: 10.35457/antivirus.v19i1.4416 169.
M. G. Al-kadzim, “Analisis Perubahan Sentimen Publik di Media Sosial X terhadap Konflik Palestina-Israel Menggunakan Model IndoBERT,” Digit. Transform. Technol., vol. 4, no. 2, pp. 1167–1174, 2024, doi: 10.47709/digitech.v4i2.5312.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Ulasan Google Play Store Aplikasi Lazada, Shopee, dan Tokopedia Menggunakan Algoritma IndoBERT
Pages: 2127-2135
Copyright (c) 2025 Afra Rihadatul Aisy, Giat Karyono

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















