Seleksi Fitur SelectKBest Dalam Prediksi Kelulusan Mahasiswa Tepat Waktu dengan Decision Tree


  • Yogi Erka Julyansa Putra * Mail Universitas Budi Luhur, Jakarta, Indonesia
  • Imelda Imelda Universitas Budi Luhur, Jakarta, Indonesia
  • Suryadih Suryadih Universitas Budi Luhur, Jakarta, Indonesia
  • (*) Corresponding Author
Keywords: Machine Learning; Prediction; Classification; Student; Scikit Learn

Abstract

University in Jakarta are facing issues with a surge in the number of students not graduating on time within the organizational office. This recommendation analyzes the performance used to predict timely student graduation. The primary objective of this consideration is to create an estimation illustration using a Decision Tree. The data used combines information about various components. The evaluation of the emerging execution is based on metrics such as accuracy, precision, and review. Timely graduation provides various benefits to colleges. Firstly, it enhances the institution's reputation as a provider of quality instruction that supports students in completing their studies almost on time. Colleges can improve the quality and sustainability of instruction by implementing methods based on this demand. The consideration involves creating a desktop application to input substitute student data and predict whether each substitute student will graduate on time or not. This examination makes a significant contribution to efforts aimed at advancing the quality of teaching in colleges and helping substitute students better achieve their academic goals. The data, collected from universities in Jakarta, consists of 308 student records. The results almost illustrate that the model using highlight assurance yields an accuracy of 97.85%, while the model without highlight options yields an accuracy of 93.54%.

Downloads

Download data is not yet available.

References

W. L. W. Foh, S. L. Ang, C. Y. Lim, A. A.-L. Alaga, and G. H. Yeap, “Prediction of Tuberculosis Patients’ Treatment Outcomes Using Multinomial Naive Bayes Algorithm and Class-Imbalanced Data,” in 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), 2023, pp. 1–6. doi: 10.1109/GlobConET56651.2023.10150132.

Hartatik, K. Kusrini, and A. Budi Prasetio, “Prediction of Student Graduation with Naive Bayes Algorithm,” in 2020 Fifth International Conference on Informatics and Computing (ICIC), IEEE, Nov. 2020, pp. 1–5. doi: 10.1109/ICIC50835.2020.9288625.

I. Buchori, “PERATURAN BADAN AKREDITASI NASIONAL PERGURUAN TINGGI NOMOR 22 TAHUN 2022,” Jakarta, May 2022.

W. Agwil, H. Fransiska, and N. Hidayati, “Analisis Ketepatan Waktu Lulus Mahasiswa Dengan Menggunakan Bagging Cart,” FIBONACCI: Jurnal Pendidikan Matematika dan Matematika, vol. 6, no. 2, p. 155, Dec. 2020, doi: 10.24853/fbc.6.2.155-166.

M. F. Thoriq, W. J. Pranoto, and F. Faldi, “Penerapan Seleksi Fitur Analysis of Variance Pada Algoritma Random Forest Classifier Dalam Klasifikasi Nilai Mahasiswa,” Explore: Jurnal Sistem Informasi dan Telematika, vol. 14, no. 2, p. 185, Dec. 2023, doi: 10.36448/jsit.v14i2.3187.

E. Alpaydin, Introduction to Machine Learning, Fourth edition. The MIT Press, 2020.

A. Ermillian and K. Nugroho, “Perancangan Model Deteksi Potensi Siswa Putus Sekolah Menggunakan Metode Logistic Regression Dan Decision Tree,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 9, no. 3, pp. 281–295, Dec. 2024, doi: 10.30591/jpit.v9i3.8007.

F. Balouchzahi, H. Lakshmaiah Shashirekha, and G. Sidorov, “Ensembled Feature Selection for Urdu Fake News Detection,” 2021. [Online]. Available: https://mangaloreuniversity.ac.in/dr-h-l-shashirekha

R. Wibowo and H. Indriyawati, “Top-k Feature Selction Untuk Deteksi Penyakit Hepatitis Menggunakan Algoritme Naïve Bayes,” Jurnal Buana Informatika, vol. 11, no. 1, pp. 1–9, May 2020, doi: 10.24002/jbi.v11i1.2456.

Rovidatul, Y. Yunus, and G. W. Nurcahyo, “Perbandingan algoritma c4.5 dan naive bayes dalam prediksi kelulusan mahasiswa,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 4, no. 1, pp. 193–199, Apr. 2023, doi: 10.37859/coscitech.v4i1.4755.

P. Patlisan, “Optimasi Akurasi Model Decision Tree Menggunakan Random Forest Regression untuk Prediksi Kuantitas Pembelian Barang pada Perusahaan Manufaktur,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 14, no. 2, pp. 217–228, Nov. 2023, doi: 10.24176/simet.v14i2.9494.

M. Yağcı, “Educational data mining: prediction of students’ academic performance using machine learning algorithms,” Smart Learning Environments, vol. 9, no. 1, p. 11, 2022, doi: 10.1186/s40561-022-00192-z.

Y. Jang, S. Choi, H. Jung, and H. Kim, “Practical early prediction of students’ performance using machine learning and eXplainable AI,” Educ Inf Technol (Dordr), vol. 27, pp. 1–35, Jun. 2022, doi: 10.1007/s10639-022-11120-6.

B. Mounika and V. Persis, “A Comparative Study of Machine Learning Algorithms for Student Academic Performance,” International Journal of Computer Sciences and Engineering, vol. 7, pp. 721–725, Apr. 2019, doi: 10.26438/ijcse/v7i4.721725.

M. Gunawan, M. Zarlis, and R. Roslina, “Analisis Komparasi Algoritma Naïve Bayes dan K-Nearest Neighbor Untuk Memprediksi Kelulusan Mahasiswa Tepat Waktu,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 513, Apr. 2021, doi: 10.30865/mib.v5i2.2925.

F. F. Anwar, A. I. Jaya, and M. Abu, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree dengan Penerapan Algoritma C4.5,” JURNAL ILMIAH MATEMATIKA DAN TERAPAN, vol. 19, no. 1, pp. 19–28, Jun. 2022, doi: 10.22487/2540766x.2022.v19.i1.15880.

I. R. Lutunani and A. Nugroho, “Analisis Prediksi Mahasiswa Terhadap Kelulusan Tepat Waktu Menggunakan Metode Data Mining Decision Tree (Studi Kasus: FTI UKSW),” Jurnal Teknologi Informasi dan Komunikasi), vol. 7, no. 2, p. 2023, 2023, doi: 10.35870/jti.

C. Wirawan, “Teknik Data Mining Menggunakan Algoritma Decision Tree C4.5 untuk Memprediksi Tingkat Kelulusan Tepat Waktu,” Applied Information Systems and Management (AISM), vol. 3, pp. 47–52, 2020.

P. L. C. P. Lopez, DATA MINING. The CRISP-DM METHODOLOGY. The CLEM Language and IBM SPSS MODELER. Lulu, 2021.

M. Dursun and M. Sabyrzhan, “CRISP - DM Process in Smart Building Management,” in 2024 11th International Conference on Electrical and Electronics Engineering (ICEEE), 2024, pp. 310–315. doi: 10.1109/ICEEE62185.2024.10779257.

M. T. H. Suhendar and Y. Widyani, “Machine Learning Application Development Guidelines Using CRISP-DM and Scrum Concept,” in 2023 IEEE International Conference on Data and Software Engineering (ICoDSE), 2023, pp. 168–173. doi: 10.1109/ICoDSE59534.2023.10291438.

M. Zha, L. Zhu, Y. Zhu, and T. Hu, “Link Quality Analysis of Wireless Sensor Networks Based on CART Decision Tree,” in 2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), 2023, pp. 600–605. doi: 10.1109/ICICML60161.2023.10424860.

R. Tang and X. Zhang, “CART Decision Tree Combined with Boruta Feature Selection for Medical Data Classification,” in 2020 5th IEEE International Conference on Big Data Analytics (ICBDA), 2020, pp. 80–84. doi: 10.1109/ICBDA49040.2020.9101199.

C. J. D. Albia and D. Origines, “Selecting of Pet Adopters using C4.5 Decision Tree Model Algorithm,” in 2022 2nd International Conference in Information and Computing Research (iCORE), 2022, pp. 30–35. doi: 10.1109/iCORE58172.2022.00025.

M. Yin, “Application of Decision Tree Classification ID3 Algorithm in Learning Strategy Recommendation of Online Teaching Platform,” in 2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON), 2023, pp. 1–4. doi: 10.1109/SMARTGENCON60755.2023.10442004.

M. Tian, “Construction cost optimization technology based on decision tree CHAID algorithm,” in The International Conference on Forthcoming Networks and Sustainability (FoNeS 2022), 2022, pp. 583–587. doi: 10.1049/icp.2022.2515.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Seleksi Fitur SelectKBest Dalam Prediksi Kelulusan Mahasiswa Tepat Waktu dengan Decision Tree

Dimensions Badge
Article History
Submitted: 2025-03-03
Published: 2025-03-28
Abstract View: 174 times
PDF Download: 73 times
How to Cite
Putra, Y. E. J., Imelda, I., & Suryadih, S. (2025). Seleksi Fitur SelectKBest Dalam Prediksi Kelulusan Mahasiswa Tepat Waktu dengan Decision Tree. Building of Informatics, Technology and Science (BITS), 6(4), 2776-2784. https://doi.org/10.47065/bits.v6i4.7086
Issue
Section
Articles