A Prediksi Rekomendasi Pemilihan Kejuruan pada Sekolah Menengah Kejuruan Menggunakan Perbandingan Metode Decision Tree C4.5 dan Naïve Bayes
Abstract
SMK Negeri 4 Bandar Lampung faces challenges in assisting students in selecting a major that aligns with their potential, interests, and abilities. The decision-making process for choosing a major is often influenced by subjective factors that lack transparency and may not be entirely accurate. Therefore, a system is needed to provide more accurate and objective recommendations. This study develops a predictive system for major selection at SMK Negeri 4 Bandar Lampung using two methods: the Decision Tree C4.5 algorithm and the Naïve Bayes algorithm. The system utilizes seven key attributes as predictive variables, including mathematics scores, English scores, science (IPA) scores, Indonesian language scores, academic achievements, participation in extracurricular activities, and color blindness condition. The study findings indicate that the C4.5 algorithm achieves an accuracy of 84.46%, whereas the Naïve Bayes algorithm outperforms it with an accuracy of 92.23%. This suggests that the Naïve Bayes algorithm is more effective for this application. Nevertheless, both methods still have limitations that can be improved through parameter optimization and more in-depth data processing. The implementation of this data-driven system is expected to enhance the efficiency of providing more relevant major recommendations at SMK Negeri 4 Bandar Lampung and serve as an inspiration for other schools to adopt similar approaches to improve education quality.
Downloads
References
F. Agustina, A. T. Sumpala, and A. Arysespajayadi, “SPK Pemilihan Jurusan Siswa Baru Menggunakan Metode AHP dan MOORA Pada SMKN 1 Kolaka,” Jurnal Sains Dan Informatika, vol. 7, no. 1, pp. 87–96, 2021.
M. Ridwan, F. Badri, and B. M. Basuki, “Rancang Bangun Sistem Pendukung Keputusan Penjurusan Mahasiswa Teknik Elektro Unisma Menggunakan Metode Analytical Hierarchy Process (AHP),” SCIENCE ELECTRO, vol. 17, no. 1, 2024.
N. S. Atmaja, “Attribution-NonCommercial 4.0 International. Some rights reserved Sistem Pendukung Keputusan Sistem Pendukung Keputusan Pemilihan Jurusan Menggunakan Metode PROMETHEE (Studi Kasus: SMK Negeri 6 Medan),” J. Nas. Inform. dan Teknol. Jar, vol. 5, no. 2, pp. 75–84, 2021.
A. F. O. Pasaribu, “Analisis Pola Menggunakan Metode C4. 5 Untuk Peminatan Jurusan Siswa Berdasarkan Kurikulum (Studi Kasus: Sman 1 Natar),” Jurnal Teknologi Dan Sistem Informasi, vol. 2, no. 1, pp. 80–85, 2021.
P. P. Putra and A. S. Chan, “Pengembangan Aplikasi Perhitungan Prediksi Stock Motor Menggunakan Algoritma C 4.5 Sebagai Bagian dari Sistem Pengambilan Keputusan (Studi Kasus di Saudara Motor),” INOVTEK Polbeng-Seri Informatika, vol. 3, no. 1, pp. 24–33, 2018.
C. Anam and H. B. Santoso, “Perbandingan Kinerja Algoritma C4.5 dan Naive Bayes untuk Klasifikasi Penerima Beasiswa,” 2018.
M. Kamil, W. Cholil, “Perbandingan Algoritma C4.5 dan Naive Bayes Pada Lulusan Tepat Waktu Mahasiswa,” JURNAL INFORMATIKA, vol. 7, no. 2, pp. 97–106, 2020
S. Sukmawati, H. Februariyanti, A. Jananto, “Perbandingan Algoritma C 4.5 Dan Algoritma Naive Bayes Untuk Klasifikasi Pekerja Migran Indonesia,” Jurnal Informatika, Manajemen dan Komputer, vol. 14, no. 1, 2022.
B. Sugara, D. Adidarma, and S. Budilaksono, “Perbandingan Akurasi Algoritma C4. 5 dan Naïve Bayes untuk Deteksi Dini Gangguan Autisme pada Anak,” Jurnal IKRA-ITH Informatika, vol. 3, no. 1, pp. 119–128, 2019.
P. C. Susanto, D. U. Arini, L. Yuntina, J. P. Soehaditama, and N. Nuraeni, “Konsep Penelitian Kuantitatif: Populasi, Sampel, dan Analisis Data (Sebuah Tinjauan Pustaka),” Jurnal Ilmu Multidisplin, vol. 3, no. 1, pp. 1–12, 2024.
H. Syah and A. Witanti, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (Svm),” Jurnal Sistem Informasi Dan Informatika (Simika), vol. 5, no. 1, pp. 59–67, 2022.
M. Kamil and W. Cholil, “Analisis Perbandingan Algoritma C4. 5 dan Naive Bayes pada Lulusan Tepat Waktu Mahasiswa di Universitas Islam Negeri Raden Fatah Palembang,” Jurnal Informatika, vol. 7, no. 2, pp. 97–106, 2020.
R. Pratama, B. Huda, E. Novalia, and H. Kabir, “Perbandingan Algoritma C4. 5 dan Naïve Bayes dalam Menentukan Persediaan Stok,” METIK JURNAL, vol. 6, no. 2, pp. 115–122, 2022.
C. R. A. Nugroho and T. Kristiana, “Penerapan Algoritma C4. 5 Untuk Kepuasan Pelanggan Toko Online Parfume Chantik,” Jurnal Algoritme, vol. 3, no. 1, pp. 10–21, 2022.
F. F. Harryanto and S. Hansun, “Penerapan Algoritma C4. 5 untuk Memprediksi Penerimaan Calon Pegawai Baru di PT WISE,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 3, no. 2, pp. 95–103, 2017.
F.-J. Yang, “An implementation of naive bayes classifier,” in 2018 International conference on computational science and computational intelligence (CSCI), IEEE, 2018, pp. 301–306.
R. Jiandi, “Implementasi Algoritma C4. 5 untuk Prediksi Potensi Mahasiswa Sebagai Pengurus Organisasi Menggunakan Data Hasil PAPI KOSTICK (Studi Kasus: Universitas Multimedia Nusantara),” Universitas Multimedia Nusantara, Tangerang, 2016.
N. Mona, “Konsep isolasi dalam jaringan sosial untuk meminimalisasi efek contagious (kasus penyebaran virus corona di Indonesia),” Jurnal sosial humaniora terapan, vol. 2, no. 2, p. 12, 2020.
M. C. Wijanto, “Sistem pendeteksi pengirim tweet dengan metode klasifikasi naive Bayes,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 1, no. 2, 2015.
L. Qadrini, A. Seppewali, and A. Aina, “Decision tree dan adaboost pada klasifikasi penerima program bantuan sosial,” Jurnal inovasi penelitian, vol. 2, no. 7, pp. 1959–1966, 2021.
R. N. Hidayat, L. M. Sabri, and M. Awaluddin, “Analisis desain jaring GNSS berdasarkan fungsi presisi (studi kasus: titik geoid geometri Kota Semarang),” Jurnal Geodesi Undip, vol. 8, no. 1, pp. 48–55, 2019.
A. Primajaya and B. N. Sari, “Random forest algorithm for prediction of precipitation,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 1, no. 1, pp. 27–31, 2018.
M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” ILKOM Jurnal Ilmiah, vol. 11, no. 3, pp. 269–274, 2019.
M. R. A. Yudianto, K. Kusrini, and H. Al Fatta, “Analisis Pengaruh Tingkat Akurasi Klasifikasi Citra Wayang dengan Algoritma Convolitional Neural Network,” (JurTI) Jurnal Teknologi Informasi, vol. 4, no. 2, pp. 182–191, 2020.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 5, no. 2, pp. 697–711, 2021.
H. Azis, P. Purnawansyah, F. Fattah, and I. P. Putri, “Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung,” ILKOM Jurnal Ilmiah, vol. 12, no. 2, pp. 81–86, 2020.
L. Qadrini, A. Seppewali, and A. Aina, “Decision tree dan adaboost pada klasifikasi penerima program bantuan sosial,” Jurnal inovasi penelitian, vol. 2, no. 7, pp. 1959–1966, 2021.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel A Prediksi Rekomendasi Pemilihan Kejuruan pada Sekolah Menengah Kejuruan Menggunakan Perbandingan Metode Decision Tree C4.5 dan Naïve Bayes
Pages: 2700-2708
Copyright (c) 2025 Ratih Windari, Handoyo Widi Nugroho

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).