Deteksi Bahan Pangan Tinggi Protein Menggunakan Model You Only Look Once (YOLO)


  • Restu Agil Yuli Arjun * Mail Universitas Aisyiyah Yogyakarta, Yogyakarta, Indonesia
  • Esi Putri Silmina Universitas Aisyiyah Yogyakarta, Yogyakarta, Indonesia
  • (*) Corresponding Author
Keywords: Stunted; Nutrition; Proteins; YOLOv11; Object Detection

Abstract

Stunting has a high prevalence of 21.6% from the government target of 14% and is one of the health problems in Indonesia. Lack of nutrition, especially protein, is the main cause that plays a role in child growth. One of the preventive solutions is to provide protein-rich complementary foods (MP-ASI). To enhance this solution, technology that can swiftly and precisely identify high-protein food components is imperative. This research seeks to create a high-protein food detection model utilizing the YOLOv11 framework, chosen for its efficacy in object detection, particularly in intricate environments and with overlapping items. The research methodology includes several stages: dataset collection and annotation, data pre-processing, model training, model evaluation, and model testing. The dataset is divided into three parts: 70% for the training set, 20% for the validation set, and 10% for the test set. The YOLOv11s model is used for training. Evaluation is based on precision, recall, and mean Average Precision (mAP) metrics to ensure the model’s detection accuracy. The evaluation results indicate a precision of 96%, recall of 92.3%, mAP50 of 96.4%, and mAP50-95 of 81.5%. During testing, the model achieved a success rate of 98.2%. These results demonstrate the model’s potential in detecting protein-rich foods, which could significantly contribute to addressing malnutrition and stunting.

Downloads

Download data is not yet available.

References

T. Sudiarti, “Nutrition Intake and Stunting of Under-Five Children in Bogor West Java, Indonesia,” Food Sci Nutr, vol. 7, no. 3, hlm. 1–7, Jul 2021, doi: 10.24966/FSN-1076/100104.

R. Yulina Widiastuti dan R. Dania Faiza, “Upaya Kader Posyandu dalam Mengurangi Tingkat Stunting di Desa Pakel Kabupaten Jombang,” Jurnal Pendidikan Luar Sekolah, Sep 2022.

Kemenkes, Panduan Kegiatan Hari Gizi Nasional: MP-ASI Kaya Protein Hewani Cegah Stunting. 2024.

Kemenkes, Panduan Kegiatan Hari Gizi Nasional: Protein Hewani Cegah Stunting. 2023.

E. Putri Silmin dan T. Hardiani, “Perancangan Sistem Pakar Penyakit Pneumonia Pada Balita Menggunakan Algoritme K-Nn (K-Nearest Neighbor),” Jurnal Pseudocode, Sep 2018.

T. Hardiani dan R. N. Putri, “Implementasi Metode Naïve Bayes Classifier Untuk Klasifikasi Stunting Pada Balita,” Digital Transformation Technology, vol. 4, no. 1, hlm. 621–627, Agu 2024, doi: 10.47709/digitech.v4i1.4481.

N. K. Negoro, E. Utami, dan A. Yaqin, “Klasifikasi Deteksi Penggunaan Masker Menggunakan Metode Convolutional Neural Network,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 8, no. 2, hlm. 664–674, Mei 2023, doi: 10.29100/jipi.v8i2.3748.

L. Tan, T. Huangfu, L. Wu, dan W. Chen, “Comparison of YOLO v3, Faster R-CNN, and SSD for Real-Time Pill Identification,” 30 Juli 2021. doi: 10.21203/rs.3.rs-668895/v1.

J. Kim, J.-Y. Sung, dan S. Park, “Comparison of Faster-RCNN, YOLO, and SSD for Real-Time Vehicle Type Recognition,” dalam 2020 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia), IEEE, Nov 2020, hlm. 1–4. doi: 10.1109/ICCE-Asia49877.2020.9277040.

L. Rahma, H. Syaputra, A. H. Mirza, dan S. D. Purnamasari, “Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once),” Jurnal Nasional Ilmu Komputer, vol. 2, no. 3, hlm. 213–232, Nov 2021, doi: 10.47747/jurnalnik.v2i3.534.

T. Handayani, “Implementasi Metode You Only Look Once (Yolo) Untuk Deteksi Kesegaran Telur Ayam Berdasarkan Citra Cangkang,” Kohesi:Jurnal Multidisiplin Saintek, vol. 3, no. 9, 2024.

Aldra Kasyfil Aziz, Ledya Novamizanti, dan Suryo Adhi Wibowo, “Perancangan dan Implementasi Deep Learning untuk Deteksi Kesegaran Ikan Beku pada Aplikasi FishQ menggunakan YOLOv8,” Jurnal Nasional SAINS dan TEKNIK, vol. 2, no. 2, hlm. 1–6, 2024.

Ultralytics, “Ultralytics YOLO11.” Diakses: 18 Desember 2024. [Daring]. Tersedia pada: https://docs.ultralytics.com/models/yolo11/

R. Sapkota, Z. Meng, dan M. Karkee, “Synthetic meets authentic: Leveraging LLM generated datasets for YOLO11 and YOLOv10-based apple detection through machine vision sensors,” Smart Agricultural Technology, vol. 9, hlm. 100614, Des 2024, doi: 10.1016/j.atech.2024.100614.

N. Jegham, C. Y. Koh, M. Abdelatti, dan A. Hendawi, “Evaluating the Evolution of YOLO (You Only Look Once) Models: A Comprehensive Benchmark Study of YOLO11 and Its Predecessors,” Okt 2024.

M. A. R. Alif, “YOLOv11 for Vehicle Detection: Advancements, Performance, and Applications in Intelligent Transportation Systems,” Okt 2024.

M. N. Al Jihad dkk., “Cegah Stunting Berbasis Teknologi, Keluarga, Dan Masyarakat,” SALUTA: Jurnal Pengabdian Kepada Masyarakat, vol. 1, no. 2, hlm. 31, Feb 2022, doi: 10.26714/sjpkm.v1i2.8683.

K. K. Arum Nurcahyanti dan I. Rahmansyah, “Efektivitas Pemanfaatan Stunting Mobile untuk Pencegahan Stunting dengan Meningkatkan Pemahaman Kebutuhan Asupan Makan di Kabupaten Banyumas,” Jurnal Multidisiplin Indonesia, vol. 2, no. 3, hlm. 594–599, Mar 2023, doi: 10.58344/jmi.v2i3.199.

Yanuardi Yanuardi, Rohmat Taufiq, Sumardi Sadi, Sri Mulyati, dan Faridi Faridi, “Pemanfaatkan Teknologi Dalam Pencegahan Stunting di Lingkungan Masyarakat Desa Suka Asih Kecamatan Pasar Kemis Kabupaten Tangerang,” Journal of Social Science and Technology for Community Services (JSSTCS), vol. 5, no. 1, Mar 2024.

E. F. Grathima, E. Yunitasari, dan R. Indarwati, “Dampak Intervensi Complementary Food pada Anak dalam Pencegahan Stunting,” Journal of Telenursing (JOTING), vol. 6, no. 1, hlm. 367–375, Feb 2024, doi: 10.31539/joting.v6i1.9024.

N. J. Hayati, D. Singasatia, dan M. R. Muttaqin, “Object Tracking Menggunakan Algoritma You Only Look Once (YOLO)v8 untuk Menghitung Kendaraan,” Komputa : Jurnal Ilmiah Komputer dan Informatika, vol. 12, no. 2, hlm. 91–99, Nov 2023, doi: 10.34010/komputa.v12i2.10654.

D. Jayakumar dan S. Peddakrishna, “Performance Evaluation of YOLOv5-based Custom Object Detection Model for Campus-Specific Scenario,” International Journal of Experimental Research and Review, vol. 38, hlm. 46–60, Apr 2024, doi: 10.52756/ijerr.2024.v38.005.

I. Nasution, A. P. Windarto, dan M. Fauzan, “Penerapan Algoritma K-Means Dalam Pengelompokan Data Penduduk Miskin Menurut Provinsi,” Building of Informatics, Technology and Science (BITS), vol. 2, no. 2, hlm. 76–83, Des 2020, doi: 10.47065/bits.v2i2.492.

N. T. Adam, Z. A. Tyas, dan T. Hardiani, “Deteksi Gestur Sistem Isyarat Bahasa Indonesia Menggunakan Metode Deep learning SSD MobileNet V2 FPNLite,” Sainteks, vol. 21, no. 2, hlm. 129, Okt 2024, doi: 10.30595/sainteks.v21i2.24006.

L. Satya, M. R. D. Septian, M. W. Sarjono, M. Cahyanti, dan E. R. Swedia, “SISTEM PENDETEKSI PLAT NOMOR POLISI KENDARAAN DENGAN ARSITEKTUR YOLOV8,” Sebatik, vol. 27, no. 2, hlm. 753–761, Des 2023, doi: 10.46984/sebatik.v27i2.2374.

Jesica Trivena Sinaga, Haniifa Aliila Faudyta, dan Egia Rosi Subhiyakto, “Klasifikasi Kanker Kulit menggunakan Convolutional Neural Network dengan Optimasi Arsitektur VGG16,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 3, Des 2024.

Syadina A. Prasetya, Mihuandayani Mihuandayani, Yansen Abast, Michael Mangole, dan Jonathan Rahman, “Implementasi Convolutional Neural Network untuk Klasifikasi Tingkat Kematangan Buah Nanas Menggunakan YOLOv8,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 1, Jun 2024.

M. A. Rohman, P. Mudjirahardjo, dan M. A. Muslim, “Implementasi Filter Gray Level Co-Occurance Matriks Terhadap Sistem Klasifikasi Kanker Payudara Dengan Metode Convolutional Neural Network,” Transmisi, vol. 23, no. 4, hlm. 160–168, Agu 2021, doi: 10.14710/transmisi.23.4.160-168.

A. F. Oklilas, S. Sukemi, dan R. Apriliyanto, “Model Yolo Versi 4 Pada Pengenalan Kendaraan Di Jalan Raya Kota Palembang,” Transmisi: Jurnal Ilmiah Teknik Elektro, vol. 25, no. 3, hlm. 136–139, Agu 2023, doi: 10.14710/transmisi.25.3.136-139.

B. Prihasto, N. R. Fadhliana, A. Hariyani, F. M. Alwafi, dan T. B. Askarin, “Development of Object Detection System on Non-Helmed Riders Using YOLOv8,” Jurnal Pendidikan Multimedia (Edsence), vol. 5, no. 2, hlm. 79–90, Des 2023, doi: 10.17509/edsence.v5i2.65910.

U. Ali, M. A. Ismail, R. A. Ariyaluran Habeeb, dan S. R. Ali Shah, “Performance Evaluation of YOLO Models in Plant Disease Detection,” Journal of Informatics and Web Engineering, vol. 3, no. 2, hlm. 199–211, Jun 2024, doi: 10.33093/jiwe.2024.3.2.15.

A. K. Wang dan Thoyyibah, “Pengembangan Sistem Deteksi Digit pada Meteran Air PDAM Menggunakan Model Deep Learning YOLOv5,” Jurnal Ilmu Komputer, vol. 1, no. 2, Des 2023.

Raihan Restu Putra, Maimunah Maimunah, dan Dimas Sasongko, “Implementasi Algoritma YOLO V8 (You Only Look Once) Dalam Deteksi Penyakit Daun Durian,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 3, Des 2024.

Kaustubh Yadav, “A Comprehensive Study on Optimization Strategies for Gradient Descent In Deep Learning,” ArXiv, 2021.

A. Akram, K. Fayakun, dan H. Ramza, “Klasifikasi Hama Serangga pada Pertanian Menggunakan Metode Convolutional Neural Network,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 2, Sep 2023, doi: 10.47065/bits.v5i2.4063.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Deteksi Bahan Pangan Tinggi Protein Menggunakan Model You Only Look Once (YOLO)

Dimensions Badge
Article History
Submitted: 2025-01-31
Published: 2025-03-07
Abstract View: 44 times
PDF Download: 28 times
How to Cite
Arjun, R. A., & Silmina, E. (2025). Deteksi Bahan Pangan Tinggi Protein Menggunakan Model You Only Look Once (YOLO). Building of Informatics, Technology and Science (BITS), 6(4), 2413-2423. https://doi.org/10.47065/bits.v6i4.6889
Issue
Section
Articles