Optimasi Performa Prediksi Penyakit Jantung Menggunakan Teknik Stacking Classifier
Abstract
Cardiovascular diseases, including heart disease, are among the leading causes of death in Indonesia. Heart disease is a condition that disrupts the function of the heart and blood vessels, often caused by blockages or narrowing of the arteries. Arteries play a crucial role in delivering oxygen-rich blood from the heart to the entire body, including the heart muscles through the coronary arteries. This condition can result from various factors such as vascular blockages, inflammation, infections, or congenital abnormalities. Such issues can impair the heart's ability to pump blood efficiently, posing a serious threat to an individual's health. This study aims to improve the accuracy of heart disease prediction by implementing the stacking classifier technique—an ensemble learning method that combines multiple machine learning algorithms, namely Support Vector Machine (SVM), Logistic Regression, and Decision Tree. The dataset used has undergone a standardization process and has been validated using the stratified k-fold cross-validation method to ensure stable predictive results. The primary contribution of this research lies in enhancing the accuracy and efficiency of heart disease diagnosis through the application of the stacking classifier, which effectively handles complex and imbalanced datasets. Previous studies have utilized the SMOTEEN technique for heart disease prediction. However, the findings of this study demonstrate that the stacking classifier approach performs better. Evaluation results show that this method achieves an accuracy of 88.52%, precision of 87.88%, recall of 90.62%, and an ROC-AUC of 94.18%, proving its effectiveness in improving medical diagnosis reliability and reducing prediction errors that could pose risks in the healthcare field.
Downloads
References
A. A. Maulani, S. Winarno, J. Zeniarja, R. T. E. Putri, and A. N. Cahyani, “Comparison of Hyperparameter Optimization Techniques in Hybrid CNN-LSTM Model for Heart Disease Classification,” Sinkron, vol. 9, no. 1, pp. 455–465, 2024, doi: 10.33395/sinkron.v9i1.13219.
D. A. Ryfai, N. Hidayat, and E. Santoso, “Klasifikasi Tingkat Resiko Serangan Penyakit Jantung Menggunakan Metode K-Nearest Neighbor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 10, pp. 4701–4707, 2022, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/11662
M. T. M. H. Medan, “Cardio Update 2024.” Access Date 20 Dec 2024, [Online]. Available: https://lms.kemkes.go.id/courses/35bff824-437e-4557-b37a-94b128c43333
T. Pipit Muliyah, Dyah Aminatun, Sukma Septian Nasution, Tommy Hastomo, Setiana Sri Wahyuni Sitepu, “済無No Title No Title No Title,” J. GEEJ, vol. 7, no. 2, pp. 10–30, 2020.
A. Zubair and R. Umamit, “Penerapan Metode Holt-Winters Untuk Peramalan Penjualan pada Industri Makanan Ringan,” Techno.com J. Teknol. Inf., vol. 20, no. 4, pp. 499–507, 2021.
M. Murad, S. Sukmawaty, A. Ansar, R. Sabani, and S. Hidayat, “Sistem Pendeteksi Kerusakan Buah Mangga Menggunakan Sensor Gas Dengan Metode DCS - LCA,” JTIM J. Teknol. Inf. dan Multimed., vol. 3, no. 4, pp. 186–194, 2021, doi: 10.35746/jtim.v3i4.169.
B. M. Karomah, “Penerapan Metode Stacking Dalam Mengklasifikasikan Penderita Penyakit Diabetes,” J. Publ. Ilmu Komput. dan Multimed., vol. 1, no. 3, pp. 188–194, 1922, doi: 10.55606/jupikom.v1i3.522.
D. D. Sidik and T. W. Sen, “Penggunaan Stacking Classifier Untuk Prediksi Curah Hujan,” IT Soc., vol. 4, no. 1, pp. 21–27, 2019, doi: 10.33021/itfs.v4i1.1180.
B. Sunarko et al., “Penerapan Stacking Ensemble Learning untuk Klasifikasi Efek Kesehatan Akibat Pencemaran Udara,” Edu Komputika J., vol. 10, no. 1, pp. 55–63, 2023, doi: 10.15294/edukomputika.v10i1.72080.
S. A. Risyad, “Data Set: Pengertian, Jenis, dan Contohnya.” Access Date 20 Dec 2024, [Online]. Available: https://dibimbing.id/blog/detail/pengertian-data-sheet-jenis-dan-contoh
A. K. Putri and Hari Suparwito, “Uji Algoritma Stacking Ensemble Classifier pada Kemampuan Adaptasi Mahasiswa Baru dalam Pembelajaran Online,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 3, no. 1, pp. 1–12, 2023, doi: 10.24002/konstelasi.v3i1.7009.
N. Fitriyah, B. Warsito, and D. A. I. Maruddani, “Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (Svm,” J. Gaussian, vol. 9, no. 3, pp. 376–390, 2020, doi: 10.14710/j.gauss.v9i3.28932.
R. N. Ramadhon, A. Ogi, A. P. Agung, R. Putra, S. S. Febrihartina, and U. Firdaus, “Implementasi Algoritma Decision Tree untuk Klasifikasi Pelanggan Aktif atau Tidak Aktif pada Data Bank,” Karimah Tauhid, vol. 3, no. 2, pp. 1860–1874, 2024, doi: 10.30997/karimahtauhid.v3i2.11952.
D. Feby, “Apa Itu Decision Tree di Machine Learning Model?” Access Date 20 Dec 2024, [Online]. Available: https://dqlab.id/apa-itu-decision-tree-di-machine-%0Alearning-model
Findasari and A. I. A. Himayati, “Analisis Regresi Logistik Biner Pada Faktor Resiko Kejadian Tuberkulosis,” J. Mat. Sains dan Teknol., vol. 24, no. 1, pp. 01–14, 2023, doi: 10.33830/jmst.v24i1.4666.2023.
M. A. Tamaza and S. Defit, “Jurnal Computer Science and Information Technology ( CoSciTech ) Implementasi Naïve Bayes dalam M-Series 4 Mobile Legends untuk Prediksi Kemenangan Implementation of Naïve Bayes in M-Series 4 Mobile Legends for Winning Prediction,” vol. 5, no. 1, pp. 205–214, 2024.
E. Richardson, R. Trevizani, J. A. Greenbaum, H. Carter, M. Nielsen, and B. Peters, “The receiver operating characteristic curve accurately assesses imbalanced datasets,” Patterns, vol. 5, no. 6, p. 100994, 2024, doi: 10.1016/j.patter.2024.100994.
F. Handayani, “Komparasi Support Vector Machine, Logistic Regression Dan Artificial Neural Network Dalam Prediksi Penyakit Jantung,” J. Edukasi dan Penelit. Inform., vol. 7, no. 3, p. 329, 2021, doi: 10.26418/jp.v7i3.48053.
A. Nurmasani and Y. Pristyanto, “Algoritme Stacking Untuk Klasifikasi Penyakit Jantung Pada Dataset Imbalanced Class,” Pseudocode, vol. 8, no. 1, pp. 21–26, 2021, doi: 10.33369/pseudocode.8.1.21-26.
M. M. Islam, T. N. Tania, S. Akter, and K. H. Shakib, “An Improved Heart Disease Prediction Using Stacked Ensemble Method,” Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, vol. 490 LNICST, pp. 84–97, 2023, doi: 10.1007/978-3-031-34619-4_8.
C. A. Ramezan, T. A. Warner, and A. E. Maxwell, “Evaluation of sampling and cross-validation tuning strategies for regional-scale machine learning classification,” Remote Sens., vol. 11, no. 2, 2019, doi: 10.3390/rs11020185.
H. Jindal, S. Agrawal, R. Khera, R. Jain, and P. Nagrath, “Heart disease prediction using machine learning algorithms,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1022, no. 1, 2021, doi: 10.1088/1757-899X/1022/1/012072.
K. M. Shiwangi, J. K. Sandhu, and R. Sahu, “Effective Heart-Disease Prediction by Using Hybrid Machine Learning Technique,” Proc. Int. Conf. Circuit Power Comput. Technol. ICCPCT 2023, pp. 1670–1675, 2023, doi: 10.1109/ICCPCT58313.2023.10245785.
S. Uddin, I. Haque, H. Lu, M. A. Moni, and E. Gide, “Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction,” Sci. Rep., vol. 12, no. 1, pp. 1–11, 2022, doi: 10.1038/s41598-022-10358-x.
M. E. Farooqui and D. J. Ahmad, “Disease Prediction System Using Support Vector Machine and Multilinear Regression,” Int. J. Innov. Res. Comput. Sci. Technol., vol. 8, no. 4, pp. 331–336, 2020, doi: 10.21276/ijircst.2020.8.4.15.
M. P. Romero et al., “Decision tree machine learning applied to bovine tuberculosis risk factors to aid disease control decision making,” Prev. Vet. Med., vol. 175, no. November, 2020, doi: 10.1016/j.prevetmed.2019.104860.
D. Irawan, E. B. Perkasa, Y. Yurindra, D. Wahyuningsih, and E. Helmud, “Perbandingan Klassifikasi SMS Berbasis Support Vector Machine, Naive Bayes Classifier, Random Forest dan Bagging Classifier,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 10, no. 3, pp. 432–437, 2021, doi: 10.32736/sisfokom.v10i3.1302.
R. Puspita and A. Widodo, “Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS,” J. Inform. Univ. Pamulang, vol. 5, no. 4, p. 646, 2021, doi: 10.32493/informatika.v5i4.7622.
F. D. Pramakrisna, F. D. Adhinata, and N. A. F. Tanjung, “Aplikasi Klasifikasi SMS Berbasis Web Menggunakan Algoritma Logistic Regression,” Teknika, vol. 11, no. 2, pp. 90–97, 2022, doi: 10.34148/teknika.v11i2.466.
G. F. Grandis, Y. Arumsari, and Indriati, “Seleksi Fitur Gain Ratio pada Analisis Sentimen Kebijakan Pemerintah Mengenai Pembelajaran Jarak Jauh dengan K-Nearest Neighbor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 8, pp. 3507–3514, 2021.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Optimasi Performa Prediksi Penyakit Jantung Menggunakan Teknik Stacking Classifier
Pages: 2380-2389
Copyright (c) 2025 Eka Amelya, Erliyan Redy Susanto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).