Implementation Naive Bayes Algorithm in Sentiment Analysis for Netflix Reviews on Google Playstore


  • Aldy Mahendra * Mail Universitas Amikom Purwokerto, Purwokerto, Indonesia
  • Anugerah Bagus Wijaya Universitas Amikom Purwokerto, Purwokerto, Indonesia
  • Dani Arifudin Universitas Amikom Purwokerto, Purwokerto, Indonesia
  • (*) Corresponding Author
Keywords: Algorithm Naive Bayes; Data Mining; User Reviews; Netflix; Streaming Apps

Abstract

Developing technology has had an impact in many ways such as watching a movie, in the past watching a movie had to be through television or cinema media. This resulted in difficulties due to inefficient broadcast schedules, as well as the inability to replay. But unlike the current era, watching movies can be done anywhere and anytime by utilizing a streaming application. One of the existing applications is Netflix, in this application there are many types of movies from all walks of life, not only that the monthly subscription system in this application is relatively cheap. The existing streaming applications are not only Netflix but there are still many other applications, therefore Netflix needs to pay attention to the reviews given by users so that this application continues to grow and is not defeated by other applications. Reviews given by users can be used as evaluation material, to see reviews cannot be seen at a glance but must be detailed. Because there are quite a lot of reviews that manual processes cannot be applied, it is necessary to use a sentiment analysis process and utilize existing algorithms such as data mining. This study aims to conduct sentiment analysis based on user reviews of the Netflix application on the google playstore. The review data of 1,000 was taken by the author and then obtained the results of the research that the reviews given by users tended to be negative and the naïve bayes algorithm got an accuracy level of 82%.

Downloads

Download data is not yet available.

References

J. Supriyanto, D. Alita, and A. R. Isnain, “Penerapan Algoritma K-Nearest Neighbor (K-NN) Untuk Analisis Sentimen Publik Terhadap Pembelajaran Daring,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 4, no. 1, pp. 74–80, Mar. 2023, doi: 10.33365/jatika.v4i1.2468.

I. Fitrianti, A. Voutama, and Y. Umaidah, “Clustering Film Populer Pada Aplikasi Netflix Dengan Menggunakan Algoritma K-Means Dan Metode CRISP-DM Clustering Popular Movies on Netflix App Using K-Means Algorithm and CRISP-DM Method,” Jurnal Of Information System Research, vol. 5, no. 4, Juli, 2024, doi: 10.47065/josh.v5i4.5646.

J. Homepage, N. C. Agustina, D. Herlina Citra, W. Purnama, C. Nisa, and A. Rozi Kurnia, “Implementation of Naïve Bayes Algorithm for Sentiment Analysis of Shopee Reviews on Google Play Store Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 2, pp. 47–54, 2022, doi: 10.57152/malcom.v2i1.195.

T. T. Thet, J. C. Na, and C. S. G. Khoo, “Aspect-based sentiment analysis of movie reviews on discussion boards,” J Inf Sci, vol. 36, no. 6, pp. 823–848, Dec. 2010, doi: 10.1177/0165551510388123.

U. Kulsum, M. Jajuli, and N. Sulistiyowati, “Analisis Sentimen Aplikasi WETV di Google Play Store Menggunakan Algoritma Support Vector Machine,” Journal of Applied Informatic and Computing, vol. 6, no. 2, 2022, doi: 10.30871/jaic.v6i2.4802.

T. Prana, W. Sukma, and M. R. Pribadi, “Analisis Sentimen Review Pengguna Viu pada Play Store dengan Algoritma Random Forest,” Jurnal Of Software Engineering and Computational Intelligence, vol. 2, no. 1. 2024, doi: 10.36982/jseci.v2i01.4016.

B. G. Sudarsono, M. I. Leo, A. Santoso, and F. Hendrawan, “Analisis Data Mining Data Netflix Menggunakan Aplikasi Rapid Miner,” JBASE - Journal of Business and Audit Information Systems, vol. 4, no. 1, Apr. 2021, doi: 10.30813/jbase.v4i1.2729.

W. Kurnia, “Sentimen Analisis Aplikasi E-Commerce Berdasarkan Ulasan Pengguna Menggunakan Algoritma Stochastic Gradient Descent,” Jurnal Teknologi dan Sistem Informasi, vol. 4, no. 1, pp. 138–143, 2023, doi: 10.33365/jtsi.v4i2.2561.

S. Nanda, D. Mualfah, and D. A. Fitri, “Analisis Sentimen Kepuasan Pengguna Terhadap Layanan Streaming Mola Menggunakan Algoritma Random Forest,” Jurnal Aplikasi Teknologi Informasi dan Manajemen, vol. 3, no. 2, 2022, doi: 10.31102/jatim.v3i2.1592.

E. A. Putra, S. Alam, and I. Kurniawan, “Analisis Sentimen Pengguna MY JNE Menggunakan Algoritma Naïve Bayes,” Jurnal Teknologi Informatika dan Komputer, vol. 10, no. 2, pp. 650–666, Oct. 2024, doi: 10.37012/jtik.v10i2.2251.

V. Brilian Adiguna and R. A. Pramudya, “Analisis Sentimen Ulasan Aplikasi Shopee Menggunakan Algoritma Random Forest, Naïve Bayes, dan Support Vector Machine di Kota Semarang.” Digital Bussiness Intelligence Journal, vol. 1, no. 1, 2025.

M. Fani Al-shufi and A. Erfina, “Sentimen Analisis Mengenai Aplikasi Streaming Film Menggunakan Algoritma Support Vector Machine Di Play Store,” Jurnal Seminar Nasional Sistem Informasi dan Manajemen Informatika, vol. 1, no. 7, 2021.

S. N. Rismanah, R. Astuti, and F. M. Basysyar, “Penerapan Algoritma Support Vector Machine Dalam Menganalisis Sentimen Ulasan Pelanggan Shopeefood Berdasarkan Twitter,” Jurnal Mahasiswa Teknik Informatika, vol. 8, no. 1, 2024, doi: 10.36040/jati.v8i1.8401.

D. Rifaldi, Abdul Fadlil, and Herman, “Teknik Preprocessing Pada Text Mining Menggunakan Data Tweet ‘Mental Health,’” Decode: Jurnal Pendidikan Teknologi Informasi, vol. 3, no. 2, pp. 161–171, Apr. 2023, doi: 10.51454/decode.v3i2.131.

A. Suryana, A. I. Purnamasari, and I. Ali, “Mengoptimalkan Kepuasan Pengguna: Analisis Sentimen Review Aplikasi Grab Di Indonesia,” Jurnal Mahasiswa Teknik Informatika, vol. 8, no. 3 2024, doi: 10.36040/jati.v8i3.

J. U. S. Lazuardi and A. Juarna, “Analisis Sentimen Ulasan Pengguna Aplikasi Joox Pada Android Menggunakan Metode Bidirectional Encoder Representation From Transformer (Bert),” Jurnal Ilmiah Informatika Komputer, vol. 28, no. 3, pp. 251–260, 2023, doi: 10.35760/ik.2023.v28i3.10090.

V. Alviani et al., “Analisis Sentimen Review Aplikasi Wetv Pada Platform Twitter Menggunakan Support Vector Machine 1,” Jurnal Ilmiah Teknik dan Ilmu Komputer, vol. 2, no. 3, pp. 143–149, 2023, doi: 10.55123.

A. Oktian Permana and Sudin Saepudin, “Perbandingan algoritma k-nearst neighbor dan naïve bayes pada aplikasi shopee,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 4, no. 1, pp. 25–32, Apr. 2023, doi: 10.37859/coscitech.v4i1.4474.

G. Radiena and A. Nugroho, “Analisis Sentimen Berbasis Aspek Pada Ulasan Aplikasi Kai Access Menggunakan Metode Support Vector Machine,” Jurnal Pendidikan Teknologi Informasi, vol. 6, no. 1, 2023. doi: 10.37792/jukanti.v6i1.836.

Y. Hosea and M. P. Berlianto, “Variabel Yang Mempengaruhi Perceived Value Dan Implikasinya Kepada Intention To Subscribe; Telaah Pada Aplikasi Netflix,” Jurnal Ekonomi dan Bisnis, vol. 14, no. 1, 2022. doi: 10.47233/jebs.v4i1.1523.

A. S. Berliana and M. Mustikasari, “Analisis Sentimen Pada Ulasan Aplikasi Jakartanotebook Di Google Play Menggunakan Metode Recurrent Neural Network (Rnn),” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3, Aug. 2024, doi: 10.23960/jitet.v12i3.5067.

W. Pondra Lesmana and A. Wijaya, “Analisis Sentimen Menggunakan Metode Naive Bayes dan Support Vector Machine pada Ulasan Aplikasi Joox Music,” Scientica: Jurnal Ilmiah Sins dan Teknologi, vol. 1, no. 2, Nov. 2023, doi: 10.572349/scientica.v1i2.237.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementation Naive Bayes Algorithm in Sentiment Analysis for Netflix Reviews on Google Playstore

Dimensions Badge
Article History
Submitted: 2025-01-08
Published: 2025-03-26
Abstract View: 152 times
PDF Download: 80 times
How to Cite
Mahendra, A., Wijaya, A., & Arifudin, D. (2025). Implementation Naive Bayes Algorithm in Sentiment Analysis for Netflix Reviews on Google Playstore. Building of Informatics, Technology and Science (BITS), 6(4), 2681−2689. https://doi.org/10.47065/bits.v6i4.6646
Issue
Section
Articles