Penerapan Naïve Bayes Untuk Analisis Sentimen Pada Ulasan Aplikasi Mobile Legends


Keywords: Mobile Legend; sentiment analysis; Naïve Bayes Model; Knowledge Discovery in Data; Review

Abstract

Indonesia has become one of the potential markets for the gaming industry, continually increasing the number of gamers. One of the most popular mobile games in Indonesia is Mobile Legends. Mobile Legends is an online multiplayer battle arena (MOBA) video game developed by Moonton, a game development company based in China. The influence of reviews on the reputation of an app also affects potential new users, whether the reviews are positive or negative. Research has shown that the Naïve Bayes model provides good accuracy for sentiment analysis. This study is expected to help understand the perceptions and experiences of players of the game. The study uses the KDD (Knowledge Discovery in Data) method due to its advantages in identifying organized patterns from a complex dataset, making the data easier to understand. During the research process, 320,513 positive reviews, 185,777 negative reviews, and 20,210 neutral reviews were obtained. The accuracy value remained constant at 87% for the 80:20 data split scenario. Performance on the negative class showed high precision at 88%. The negative recall was 92%, indicating that the model could accurately capture truly negative reviews. A stable F1-Score of 82% signifies a good balance between precision and recall for the negative class. Performance on the positive class showed 87% precision and 83% recall. The F1-Score between the two was nearly balanced, indicating that the model performed similarly for both labels overall.

Downloads

Download data is not yet available.

References

B. Adikara, “Jumlah Gamer di Indonesia Terus Meningkat, Diperkirakan Capai 192,1 Juta Orang di 2025, Salah Satu yang Paling Banyak Adalah Pemain Mobile Legends - Jawa Pos.” Accessed: Dec. 21, 2024. [Online]. Available: https://www.jawapos.com/hobi-kesenangan/015230108/jumlah-gamer-di-indonesia-terus-meningkat-diperkirakan-capai-1921-juta-orang-di-2025-salah-satu-yang-paling-banyak-adalah-pemain-mobile-legends

G. A. Wijaya and F. Santi, “The Influence of the Mobile Legends E-Sport Phenomenon on Student Financial Behavior,” Jurnal Informatika Ekonomi Bisnis, pp. 280–285, 2024, doi: https://doi.org/10.37034/infeb.v6i1.852.

A. R. Hidayat, “Tinjauan Ekonomi Islam Terhadap Jual Beli Online Account Game Mobile Legends: Bang Bang Dalam Tinjauan Fiqih Muamalah,” Jurnal Syntax Admiration, vol. 1, no. 1, pp. 13–22, 2020, doi: https://doi.org/10.46799/jsa.v1i1.2.

D. Kusnanda and A. Permana, “Implementation of Naive Bayes Classifier (NBC) for Sentiment Analysis on Twitter in Mobile Legends,” International Journal of Science, Technology & Management, vol. 4, no. 5, pp. 1132–1138, 2023, doi: https://doi.org/10.46729/ijstm.v4i5.935.

C. Chapple, “Mobile Legends Revenue Passes $500 Million as Southeast Asia Powers Explosive Growth,” Sensor Tower. Accessed: Dec. 12, 2024. [Online]. Available: https://sensortower.com/blog/mobile-legends-revenue-500-million

C. F. Hasri and D. Alita, “Penerapan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,” Jurnal informatika dan rekayasa perangkat lunak, vol. 3, no. 2, pp. 145–160, 2022, doi: https://doi.org/10.33365/jatika.v3i2.2026.

W. Khofifah, D. N. Rahayu, and A. M. Yusuf, “Analisis Sentimen Menggunakan Naive Bayes Untuk Melihat Review Masyarakat Terhadap Tempat Wisata Pantai Di Kabupaten Karawang Pada Ulasan Google Maps,” Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol. 16, no. 4, pp. 171–180, 2022, doi: https://doi.org/10.35969/interkom.v16i4.192.

D. Kusnanda and A. Permana, “Implementation of Naive Bayes Classifier (NBC) for Sentiment Analysis on Twitter in Mobile Legends,” International Journal of Science, Technology & Management, vol. 4, no. 5, pp. 1132–1138, 2023, doi: https://doi.org/10.46729/ijstm.v4i5.935.

P. Aditya, A. Azzahra, and A. Wijaya, “Analisis Sentimen Pemain Subway Surf Melalui Metode Naive Bayes Menurut Ulasan Play Store,” Jurnal Ilmiah Sistem Informasi, vol. 3, no. 2, pp. 267–275, 2023.

A. D. A. Putra and S. Juanita, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi: https://doi.org/10.35957/jatisi.v8i2.962.

A. Nurian, “Analisis Sentimen Ulasan Pengguna Aplikasi Google Play Menggunakan Naïve Bayes,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 3s1, 2023, doi: http://dx.doi.org/10.23960/jitet.v11i3s1.3348.

H. Z. Muflih, A. R. Abdillah, and F. N. Hasan, “Analisis Sentimen Ulasan Pengguna Aplikasi Ajaib Menggunakan Metode Naïve Bayes,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 3, pp. 1613–1621, 2023, doi: https://doi.org/10.30865/klik.v4i3.1303.

K. Anwar, “Analisa sentimen Pengguna Instagram Di Indonesia Pada Review Smartphone Menggunakan Naive Bayes,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 4, pp. 148–155, 2022, doi: https://doi.org/10.30865/klik.v2i4.315.

A. Nuraini, A. Faqih, G. Dwilestari, N. D. Nuris, and R. Narasati, “Analisis Sentimen Terhadap Review Aplikasi Brimo Di Google Play Store Menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 6, pp. 3661–3666, 2023, doi: https://doi.org/10.36040/jati.v7i6.8228.

M. D. Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine,” INTECOMS: Journal of Information Technology and Computer Science, vol. 5, no. 1, pp. 1–7, 2022, doi: https://doi.org/10.31539/intecoms.v5i1.3708.

N. L. P. M. Putu and A. Z. Amrullah, “Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok Menggunakan Algoritma Naive Bayes dan Latent Dirichlet Allocation,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 123–131, 2021, doi: https://doi.org/10.29207/resti.v5i1.2587.

IBM, “Using CountVectorizer for NLP feature extraction | IBM.” Accessed: Dec. 21, 2024. [Online]. Available: https://www.ibm.com/reference/python/countvectorizer

V. Kumar, “Day 7: Handling Punctuation and Special Characters: Cleaning Up Text in NLP!” Accessed: Dec. 21, 2024. [Online]. Available: https://www.linkedin.com/pulse/day-7-handling-punctuation-special-characters-up-text-vinod-kumar-g-r-0xosf

J. Murel, “Tokenizing text in Python - IBM Developer.” Accessed: Dec. 21, 2024. [Online]. Available: https://developer.ibm.com/tutorials/awb-tokenizing-text-in-python/

R. Slamet, W. Gata, A. Novtariany, K. Hilyati, and F. A. Jariyah, “Analisis Sentimen Twitter Terhadap Penggunaan Artis Korea Selatan Sebagai Brand Ambassador Produk Kecantikan Lokal,” INTECOMS: Journal of Information Technology and Computer Science, vol. 5, no. 1, pp. 145–153, 2022, doi: https://doi.org/10.31539/intecoms.v5i1.3933.

D. Alita, “Multiclass SVM Algorithm for Sarcasm Text in Twitter,” JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), vol. 8, no. 1, pp. 118–128, 2021, doi: https://doi.org/10.35957/jatisi.v8i1.646.

F. Juliyanto and P. Parjito, “Rekayasa Aplikasi Manajemen E-Filling Dokumen Surat Pada Pt Alp (Atosim Lampung Pelayaran),” Jurnal Teknologi Dan Sistem Informasi, vol. 2, no. 1, pp. 43–49, 2021, doi: https://doi.org/10.33365/jtsi.v2i1.741.

M. E. Effendi, I. Yuadi, and I. Puspitasari, “Prediksi Guru Kemungkinan Tetap Bekerja di Sekolah Al Uswah Surabaya Menggunakan Machine Learning,” Jurnal Informasi dan Teknologi, pp. 129–137, 2023, doi: https://doi.org/10.37034/jidt.v5i2.361.

T. A. L. Jaya and M. Ayub, “Pengembangan Knowledge Management System dengan Teknik Information Retrieval,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 7, no. 1, 2021, doi: https://doi.org/10.28932/jutisi.v7i1.3316.

T. S. Sabrila, V. R. Sari, and A. E. Minarno, “Analisis Sentimen Pada Tweet Tentang Penanganan Covid-19 Menggunakan Word Embedding Pada Algoritma Support Vector Machine Dan K-Nearest Neighbor,” Fountain of Informatics Journal, vol. 6, no. 2, p. 69, 2021, doi: http://dx.doi.org/10.21111/fij.v6i2.5536.

A. C. Kamilla, N. Priyani, R. Priskila, and V. H. Pranatawijaya, “Analisis Sentimen Film Agak Laen Dengan Kecerdasan Buatan: Text Mining Metode Naïve Bayes Classifier,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 3, pp. 2923–2928, 2024, doi: https://doi.org/10.36040/jati.v8i3.9587.

M. U. Albab and M. N. Fawaiq, “Optimization Of The Stemming Technique On Text Preprocessing President 3 Periods Topic,” Jurnal Transformatika, vol. 20, no. 2, pp. 1–12, 2023, doi: http://dx.doi.org/10.26623/transformatika.v20i2.5374.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Naïve Bayes Untuk Analisis Sentimen Pada Ulasan Aplikasi Mobile Legends

Dimensions Badge
Article History
Submitted: 2024-12-23
Published: 2025-03-01
Abstract View: 26 times
PDF Download: 23 times
How to Cite
Perkasa, A., & Putri, A. (2025). Penerapan Naïve Bayes Untuk Analisis Sentimen Pada Ulasan Aplikasi Mobile Legends. Building of Informatics, Technology and Science (BITS), 6(4), 2152-2164. https://doi.org/10.47065/bits.v6i4.6507
Issue
Section
Articles