Analisis Sentimen Masyarakat terhadap Penggunaan Sepeda Listrik pada Anak-Anak di Media Sosial X Menggunakan Metode SVM
Abstract
The use of electric bicycles among children is becoming increasingly popular in Indonesia. While offering practicality and mobility efficiency, their usage raises safety concerns, especially for children on the road. Public opinions on this issue are widely discussed on social media platform X (Twitter), with some supporting their use due to practicality and eco-friendliness, while others advocate stricter regulations to ensure children’s safety. This study analyzes public sentiment toward the use of electric bicycles for children using the Support Vector Machine (SVM) method. Data was collected through a crawling process on social media X using the Tweet Harvest tool, resulting in 3,565 entries. The data underwent preprocessing and translation into English for sentiment analysis using TextBlob. Sentiments were labeled, identifying 1,737 negative sentiments (64.24%) and 967 positive sentiments (35.76%). The dataset was divided into 80% for training and 20% for testing. An SVM model with a linear kernel was applied for classification. Performance evaluation using a confusion matrix showed 0.84 accuracy, precision scores of 0.84 (negative) and 0.85 (positive), recall scores of 0.92 (negative) and 0.71 (positive), and F1-scores of 0.88 (negative) and 0.78 (positive). The findings reveal that public sentiment predominantly reflects concerns about children’s safety risks.
Downloads
References
P. Maramis, R. A. Maramis, and R. Dientje, “Penegakan Hukum Penggunaan Sepeda Listrik oleh Anak di Bawah Umur di Jalan Raya Sesuai Hukum Positif di Indonesia,” Univ. Sam Ratulangi_Fakultas Huk., vol. 2, no. 8, 2023.
F. Nurfadlilah, A. Sofi Malika, A. Rifqi Naufal, and R. Wikansari, “Peran Sepeda Listrik dalam Mewujudkan Mobilitas Berkelanjutan,” Humanit. J. Homaniora, Sos. dan Bisnis, vol. 2, no. 1, pp. 136–141, 2024, [Online]. Available: https://humanisa.my.id/index.php/hms/article/view/91
H. Lesmana and A. Fithry, “Pengaturan dan Perlindungan Hukum terhadap Penggunaan Sepeda Listrik di Jalan Raya Indonesia,” Pros. SNAPP Sos. Humaniora, Pertanian, Kesehat. dan Teknol., vol. 2, no. 1, pp. 109–113, 2024, doi: 10.24929/snapp.v2i1.3180.
Y. D. R. PUSPARISA, “Sepeda Listrik Banyak Dikendarai Anak di Jalan Raya, Bagaimana Aturannya?,” kompas.id. Accessed: Nov. 20, 2024. [Online]. Available: https://www.kompas.id/baca/ekonomi/2024/07/21/sepeda-listrik-banyak-dikendarai-anak-anak-bagaimana-ideal-penggunaannya
A. Fithry, Sjaifurrachman, and R. . W. S. Sakinah, “Edukasi Pendampingan Bahaya Penggunaan Sepeda Listrik pada Anak,” Pros. SNAPP Sos. Humaniora, Pertanian, Kesehat. dan Teknol., pp. 433–438, 2023.
M. A. Syahira and R. Kurniawan, “Analisis Sentimen Cyberbullying pada Media Sosial X Menggunakan Metode Support Vector Machine,” J. Media Inform. Budidarma, vol. 8, no. 3, p. 1724, 2024, doi: 10.30865/mib.v8i3.7926.
S. W. Iriananda, R. W. Budiawan, A. Y. Rahman, and I. Istiadi, “Optimasi Klasifikasi Sentimen Komentar Pengguna Game Bergerak Menggunakan Svm, Grid Search Dan Kombinasi N-Gram,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 4, pp. 743–752, 2024, doi: 10.25126/jtiik.1148244.
A. Syahri, A. Angraini, and F. Muttakin, “Sentimen Analisis pada Ulasan Aplikasi Ajaib di Google Play Store dengan Algoritma Support Vector Machine,” INOVTEK Polbeng - Seri Inform., vol. 9, no. 1, pp. 257–271, 2024, doi: 10.35314/isi.v9i1.4047.
N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat terhadap Program Kartu Prakerja pada Twitter dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021.
M. D. Al Fahreza, A. Luthfiarta, M. Rafid, M. Indrawan, and A. Nugraha, “Analisis Sentimen: Pengaruh Jam Kerja terhadap Kesehatan Mental Generasi Z,” J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 16–25, 2024, doi: 10.52158/jacost.v5i1.715.
J. E. Br Sinulingga and H. C. K. Sitorus, “Analisis Sentimen Opini Masyarakat terhadap Film Horor Indonesia Menggunakan Metode SVM dan TF-IDF,” J. Manaj. Inform., vol. 14, no. 1, pp. 42–53, 2024, doi: 10.34010/jamika.v14i1.11946.
D. Ananda and R. R. Suryono, “Analisis Sentimen Publik terhadap Pengungsi Rohingya di Indonesia dengan Metode Support Vector Machine dan Naïve Bayes,” J. Media Inform. Budidarma, vol. 8, no. 2, p. 748, 2024, doi: 10.30865/mib.v8i2.7517.
S. A. Putra and A. Wijaya, “Analisis Sentimen Artificial Intelligence (AI) pada Media Sosial Twitter Menggunakan Metode Lexicon-Based,” JuSiTik J. Sist. dan Teknol. Inf. Komun., vol. 7, no. 1, pp. 21–28, 2023, doi: 10.32524/jusitik.v7i1.1042.
F. Amaliah and I. K. Dwi Nuryana, “Perbandingan Akurasi Metode Lexicon-Based dan Naive Bayes Classifier pada Analisis Sentimen Pendapat Masyarakat Terhadap Aplikasi Investasi pada Media Twitter,” J. Informatics Comput. Sci., vol. 3, no. 03, pp. 384–393, 2022, doi: 10.26740/jinacs.v3n03.p384-393.
R. N. R. dan A. S. K. Suripto, “Teknik pre-processing dan classification dalam data science,” Binus University. [Online]. Available: https://mie.binus.ac.id/2022/08/26/teknik-pre-processing-dan-classification-dalam-data-science/
D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma SVM untuk Analisis Sentimen pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.
S. T. M. Yessi Asri, M. K. Dr.Dra. Dwina Kuswardani, M. kom. Listra Frigia missianes Horhoruw, S.Kom., and S. Siti Aisyah ramadhana, MACHINE LEARNING & DEEP LEARNING Analisis Sentimen Menggunakan Ulasan Pengguna Aplikasi. jawa timur: Uwais Inspirasi Indonesia, 2019.
A. Reandito, I. Sumantri, M. Fatchan, and T. N. Wiyatno, “Analisis Sentimen Produk Makanan Jepang di Indonesia pada Twitter Menggunakan Naïve Bayes,” J. Ilm. Tek. Inform. dan Sist. Inf., 2024.
J. Supriyanto, D. Alita, and A. R. Isnain, “Penerapan Algoritma K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Publik terhadap Pembelajaran Daring,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 4, no. 1, pp. 74–80, 2023, doi: 10.33365/jatika.v4i1.2468.
C. Zai and A. R. Isnain, “Komparasi Algoritma Naïve Bayes dan Support Vector Machine (SVM) pada Analisis Sentimen Capcut,” J. Process., vol. 18, no. 2, pp. 272–285, 2023, doi: 10.33998/processor.2023.18.2.897.
A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, “Sentimen Analisis Publik terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” J. Data Min. dan Sist. Inf., vol. 2, no. 1, p. 31, 2021, doi: 10.33365/jdmsi.v2i1.1021.
Y. Laia, S. Sandino Berutu, el Pieter Sumihar, and H. Budiati, “Implementasi Library Textblob dan Metode Support Vector Machine Pada Analisis Sentimen Pelanggan Terhadap Jasa Transportasi Online,” Technol. Sci., vol. 6, no. 1, pp. 1–10, 2024, doi: 10.47065/bits.v6i1.5090.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Masyarakat terhadap Penggunaan Sepeda Listrik pada Anak-Anak di Media Sosial X Menggunakan Metode SVM
Pages: 1954-1965
Copyright (c) 2024 Rohmah Dewi Lestari, Auliya Rahman Isnain

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).