Pemanfaatan Transformer untuk Peringkasan Teks: Studi Kasus pada Transkripsi Video Pembelajaran
Abstract
Abstract−In the digital era, learning videos are increasingly being used, however, they often contain irrelevant information, making it difficult to comprehend the content. This study proposes an approach based on the Whisper and T5 models to generate text summaries from YouTube educational video transcripts. Whisper is used for speech-to-text transcription, focusing on model variants that offer a low Word Error Rate (WER) and time efficiency. Subsequently, the T5 model is fine-tuned to produce accurate text summaries, with a strategy of segmenting the transcript to address input length limitations. Text preprocessing is not applied as it resulted in better evaluation quality. The results show that the combination of Whisper Turbo and the optimized T5 model provides the best performance, with F1-Scores on the ROUGE metrics of 39.23 (ROUGE-1), 13.17 (ROUGE-2), and 23.84 (ROUGE-L). This approach successfully generates more relevant and comprehensive text summaries, enhancing the effectiveness of video-based learning. Therefore, this research makes a significant contribution to the development of text summarization technology for learning videos.
Downloads
References
H. M. E. Putry, V. Nuzulul’Adila, R. Sholeha, and D. Hilmi, “Video based learning sebagai tren media pembelajaran di era 4.0,” Tarbiyatuna J. Pendidik. Ilm., vol. 5, no. 1, pp. 1–24, 2020, doi: 10.55187/tarjpi.v5i1.3870.
B. Rahmat and D. Darmiati, “Pengembangan Media Pembelajaran dengan Video Based Learning di Akademi Kebidanan Pelamonia,” Lect. J. Pendidik., vol. 12, no. 2, pp. 149–165, 2021, doi: 10.31849/lectura.v12i2.7268.
D. Wong, “Effectiveness of learning through video clips and video learning improvements between business related postgraduate and undergraduate students,” Int. J. Mod. Educ., vol. 2, no. 7, pp. 119–127, 2020, doi: 10.35631/IJMOE.27009.
H. B. U. Haq, M. Asif, and M. Bin Ahmad, “Video summarization techniques: a review,” Int. J. Sci. Technol. Res, vol. 9, no. 11, pp. 146–153, 2020.
A. Bahari and K. E. Dewi, “Peringkasan Teks Otomatis Abstraktif Menggunakan Transformer Pada Teks Bahasa Indonesia,” Komputa J. Ilm. Komput. dan Inform., vol. 13, no. 1, pp. 83–91, 2024, doi: 10.34010/komputa.v13i1.11197.
R. F. Khoiroh, E. Julianto, S. A. Ardiyansa, H. A. Fajri, A. A. R. Yasa, and B. Sangapta, “Implementasi Speech Recognition Whisper pada Debat Calon Wakil Presiden Republik Indonesia,” Explore, vol. 14, no. 2, pp. 67–74, 2024, doi: 10.35200/ex.v14i2.115.
B. Ay, F. Ertam, G. Fidan, and G. Aydin, “Turkish abstractive text document summarization using text to text transfer transformer,” Alexandria Eng. J., vol. 68, pp. 1–13, 2023, doi: 10.1016/j.aej.2023.01.008.
Y. Singh, R. Kumar, S. Kabdal, and P. Upadhyay, “YouTube Video Summarizer using NLP: A Review,” Int. J. Performability Eng., vol. 19, no. 12, p. 817, 2023, doi: 10.23940/ijpe.23.12.p6.817823.
L. R. S. Gris, R. Marcacini, A. C. Junior, E. Casanova, A. Soares, and S. M. Aluísio, “Evaluating OpenAI’s Whisper ASR for Punctuation Prediction and Topic Modeling of life histories of the Museum of the Person,” arXiv Prepr. arXiv2305.14580, 2023.
I. N. Purnama and N. N. W. Utami, “Implementasi Peringkas Dokumen Berbahasa Indonesia Menggunakan Metode Text To Text Transfer Transformer (T5),” J. Teknol. Inf. dan Komput., vol. 9, no. 4, 2023.
G. Hartawan, D. S. Maylawati, and W. Uriawan, “Bidirectional and Auto-Regressive Transformer (BART) for Indonesian Abstractive Text Summarization,” J. Inform. Polinema, vol. 10, no. 4, pp. 535–542, 2024, doi: 10.33795/jip.v10i4.5242.
D. Ferdiansyah and C. S. K. Aditya, “Implementasi Automatic Speech Recognition Bacaan Al-Qur’an Menggunakan Metode Wav2Vec 2.0 dan OpenAI-Whisper,” J. Tek. Elektro dan Komput. TRIAC, vol. 11, no. 1, pp. 11–16, 2024, doi: 10.21107/triac.v11i1.24332.
C. Raffel et al., “Exploring the limits of transfer learning with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21, no. 140, pp. 1–67, 2020.
A. G. Etemad, A. I. Abidi, and M. Chhabra, “Fine-tuned t5 for abstractive summarization,” Int. J. Performability Eng., vol. 17, no. 10, p. 900, 2021, doi: 10.23940/ijpe.21.10.p8.900906.
D. A. Fadhlillah and D. Ikasari, “Optimizing Online News Understanding: Abstractive Summarization Approach with T5 for Comprehend Content.” 2023
E. Zolotareva, T. M. Tashu, and T. Horváth, “Abstractive Text Summarization using Transfer Learning.,” in ITAT, 2020, pp. 75–80.
J. Gabín, M. E. Ares, and J. Parapar, “Enhancing Automatic Keyphrase Labelling with Text-to-Text Transfer Transformer (T5) Architecture: A Framework for Keyphrase Generation and Filtering,” arXiv Prepr. arXiv2409.16760, 2024.
A. A. Magriyanti, “Analisis pengembangan algoritma porter stemming dalam bahasa indonesia,” 2018, doi: 10.31227/osf.io/7ge4v.
M. Barbella and G. Tortora, “Rouge metric evaluation for text summarization techniques,” Available SSRN 4120317, 2022, doi: 10.2139/ssrn.4120317.
Y. Yuliska and K. U. Syaliman, “Literatur Review Terhadap Metode, Aplikasi dan Dataset Peringkasan Dokumen Teks Otomatis untuk Teks Berbahasa Indonesia,” IT J. Res. Dev., vol. 5, no. 1, pp. 19–31, 2020, doi: 10.25299/itjrd.2020.vol5(1).4688.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Pemanfaatan Transformer untuk Peringkasan Teks: Studi Kasus pada Transkripsi Video Pembelajaran
Pages: 2111-2119
Copyright (c) 2024 Muhammad Furqon Fadlilah, Aldy Rialdy Atmadja, Muhammad Deden Firdaus

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).