Implementation of the Naïve Bayes Algorithm to Predict New Student Admissions


  • Aulia Salsabila * Mail Universitas Labuhanbatu, Rantauprapat, Indonesia
  • Marnis Nasution Universitas Labuhanbatu, Rantauprapat, Indonesia
  • Irmayanti Irmayanti Universitas Labuhanbatu, Rantauprapat, Indonesia
  • (*) Corresponding Author
Keywords: Admission; Gaussian; Naïve Bayes; New Student; Prediction

Abstract

New student admissions are critical to the success of an educational institution because they determine the existence and financial sustainability of that institution. The number of prospective students who register changes every year. The school cannot anticipate the number of students who will come. Additionally, data on prospective students who enroll is collected annually without being analyzed to extract valuable information. The school must make predictions to estimate the number of new students in the next school year. Predictions are essential for effective planning, both in the long and short term. This research aims to apply the Naïve Bayes algorithm with Gaussian type to predict new student admissions. To find out whether the Naïve Bayes algorithm works well, an evaluation matrix is used. The methods applied include the dataset collection process, data preprocessing, split data training and testing, feature engineering, the implementation of Naïve Bayes, and results evaluation. The dataset is divided into 70% training data and 30% testing data. The research results show an accuracy score of 86.11% during training and an accuracy score of 90.62% during model testing, with an increase of 4.51%. These results show that there is no indication of overfitting in the machine learning algorithm used. The evaluation matrix produces an accuracy score of 90.62%, precision of 100%, recall of 90.62%, and f1-score of 95.08%. From the results of the evaluation matrix scores, it can be concluded that the naive Bayes algorithm with Gaussian type succeeded in predicting new student admissions well.

Downloads

Download data is not yet available.

References

J. Cirelli, A. M. Konkol, F. Aqlan, and J. C. Nwokeji, “Predictive Analytics Models for Student Admission and Enrollment,” in Proceedings of the International Conference on Industrial Engineering and Operations Management, 2018, pp. 1395–1403.

G. W. N. Wibowo, Z. Arifin, M. A. Romli, and N. I. Amal, “Prediksi Kelanjutan Studi Siswa Ke Perguruan Tinggi Dengan Naive Bayes,” J. DISPROTEK, vol. 11, no. 1, pp. 41–46, 2020, doi: 10.34001/jdpt.v11i1.1159.

S. Rizal and M. Lutfi, “Penerapan Algoritma Naïve Bayes Untuk Prediksi Penerimaan Siswa Baru Di SMK Al-Amien Wonorejo,” Explor. IT J. Keilmuan dan Apl. Tek. Inform., vol. 10, no. 1, pp. 14–21, 2018, doi: 10.35891/explorit.v10i1.1671.

P. D. Silitonga, H. Himawan, and R. Damanik, “FORECASTING ACCEPTANCE OF NEW STUDENTS USING DOUBLE EXPONENTIAL SMOOTHING METHOD,” J. Crit. Rev., vol. 7, no. 1, pp. 300–305, 2020, doi: 10.31838/jcr.07.01.57.

S. Suwayudhi, E. Irawan, and B. E. Damanik, “Teknik Klasifikasi dalam Memprediksi Penerimaan Siswa Baru Menggunakan Metode Naive Bayes,” JOMLAI J. Mach. Learn. Artif. Intell., vol. 1, no. 3, pp. 251–256, 2022, doi: 10.55123/jomlai.v1i3.963.

N. A. Jalil, H. J. Hwang, and N. M. Dawi, “Machines Learning Trends, Perspectives and Prospects in Education Sector,” in Proceedings of the 3rd International Conference on Education and Multimedia Technology, in ICEMT ’19. New York, NY, USA: Association for Computing Machinery, 2019, pp. 201–205. doi: 10.1145/3345120.3345147.

K. T. Chui, D. C. L. Fung, M. D. Lytras, and T. M. Lam, “Predicting at-risk university students in a virtual learning environment via a machine learning algorithm,” Comput. Human Behav., vol. 107, p. 105584, 2020, doi: https://doi.org/10.1016/j.chb.2018.06.032.

A. Qazdar, B. Er-Raha, C. Cherkaoui, and D. Mammass, “A machine learning algorithm framework for predicting students performance: A case study of baccalaureate students in Morocco,” Educ. Inf. Technol., vol. 24, no. 6, pp. 3577–3589, 2019, doi: 10.1007/s10639-019-09946-8.

M. Segura, J. Mello, and A. Hernández, “Machine Learning Prediction of University Student Dropout: Does Preference Play a Key Role?,” Mathematics, vol. 10, no. 18. 2022. doi: 10.3390/math10183359.

B. Albreiki, N. Zaki, and H. Alashwal, “A Systematic Literature Review of Student’ Performance Prediction Using Machine Learning Techniques,” Educ. Sci., 2021.

E. M. Onyema et al., “Prospects and Challenges of Using Machine Learning for Academic Forecasting.,” Comput. Intell. Neurosci., vol. 2022, p. 5624475, 2022, doi: 10.1155/2022/5624475.

I. El Guabassi, Z. Bousalem, R. Marah, and A. Qazdar, “A Recommender System for Predicting Students’ Admission to a Graduate Program using Machine Learning Algorithms,” Int. J. Online Biomed. Eng., vol. 17, no. 02, pp. 135–147, 2021, doi: 10.3991/ijoe.v17i02.20049.

Rasiban and S. P. R. Maruli, “Penerapan Data Mining Untuk Memprediksi Penerimaan Peserta Didik Baru Jalur Prestasi Akademik Di SMA Negeri 13 Jakarta Dengan Menggunakan Algoritma Random Forest,” Innov. J. Soc. Sci. Res., vol. 3, no. 4, pp. 10065–10079, 2023.

A. H. Sani, A. Setiawan, and A. Primadewi, “Penerapan Metode Naive Bayes Dalam Rekomendasi Strategi Penerimaan Peserta Didik Baru,” J. Comput., vol. 4, no. 1, pp. 245–251, 2022, doi: 10.47065/josyc.v4i1.2438.

I. Loelianto, M. S. S. Thayf, and H. Angriani, “IMPLEMENTASI TEORI NAÏVE BAYES DALAM KLASIFIKASI CALON MAHASISWA BARU STMIK KHARISMA MAKASSAR,” SINTECH, vol. 3, no. 2, pp. 110–117, 2020, doi: 10.31598/sintechjournal.v3i2.651.

R. Ramadani, B. H. Hayadi, and H. Hartono, “Comparative Analysis of Algorithms Naïve Bayes and C45 for Student Satisfaction with Administrative Services,” in 2023 International Conference of Computer Science and Information Technology (ICOSNIKOM), 2023, pp. 1–6. doi: 10.1109/ICoSNIKOM60230.2023.10364373.

W. Gata et al., “Algorithm Implementations Naive Bayes, Random Forest. C4.5 on Online Gaming for Learning Achievement Predictions,” in Proceedings of the 2nd International Conference on Research of Educational Administration and Management (ICREAM 2018), Atlantis Press, Mar. 2019, pp. 1–9. doi: 10.2991/icream-18.2019.1.

Nurhachita and E. S. Negara, “A comparison between deep learning, naïve bayes and random forest for the application of data mining on the admission of new students,” IAES Int. J. Artif. Intell., vol. 10, no. 2, pp. 324–331, 2021, doi: 10.11591/ijai.v10.i2.pp324-331.

M. Garonga and Rita Tanduk, “COMPARISON OF NAIVE BAYES, DECISION TREE, AND RANDOM FOREST ALGORITHMS IN CLASSIFYING LEARNING STYLES OF UNIVERSITAS KRISTEN INDONESIA TORAJA STUDENTS,” J. Tek. Inform., vol. 4, no. 6 SE-Articles, pp. 1507–1514, Dec. 2023, doi: 10.52436/1.jutif.2023.4.6.1020.

İ. Koyuncu and S. Gelbal, “Comparison of Data Mining Classification Algorithms on Educational Data under Different Conditions,” J. Meas. Eval. Educ. Psychol., vol. 11, no. 4, pp. 325–345, 2020, doi: 10.21031/epod.696664.

S. Rizal and M. Lutfi, “Penerapan Algoritma Naïve Bayes Untuk Prediksi Penerimaan Siswa Baru Di Smk Al-Amien Wonorejo,” Explor. IT J. Keilmuan dan Apl. Tek. Inform., vol. 10, no. 1, pp. 14–21, 2018, doi: 10.35891/explorit.v10i1.1671.

F. Santoso, Sunardi, and H. Z. Lukman, “Implementasi Data Mining dengan Metode Naive Bayes Untuk Memprediksi Penerimaan Siswa Baru di MTS NU Islamiyah Asembagus,” G-Tech J. Teknol. Terap., vol. 7, no. 4, pp. 1355–1366, 2023, doi: 10.33379/gtech.v7i4.3086.

E. K. Ampomah, G. Nyame, Z. Qin, P. C. Addo, E. O. Gyamfi, and M. Gyan, “Stock Market Prediction with Gaussian Naïve Bayes Machine Learning Algorithm,” Informatica, vol. 45, pp. 243–256, 2021, doi: 10.31449/inf.v45i2.3407.

Afdhaluzzikri, H. Mawengkang, and O. S. Sitompul, “Perfomance of Naive Bayes method with data weighting,” SinkrOn, vol. 7, no. 3, pp. 817–821, 2022, doi: 10.33395/sinkron.v7i3.11516.

T. Agustina, M. Masrizal, and I. Irmayanti, “Performance Analysis of Random Forest Algorithm for Network Anomaly Detection using Feature Selection,” Sinkron, vol. 8, no. 2, pp. 1116–1124, 2024, doi: 10.33395/sinkron.v8i2.13625.

S. S. Muliani, V. Sihombing, and I. R. Munthe, “Implementation of Exploratory Data Analysis and Artificial Neural Networks to Predict Student Graduation on-Time,” Sink. J. dan Penelit. Tek. Inform., vol. 8, no. 2, pp. 1188–1199, 2024, doi: 10.33395/sinkron.v8i2.13658.

V. R. Joseph, “Optimal ratio for data splitting,” Stat. Anal. Data Min. ASA Data Sci. J., vol. 15, no. 4, pp. 531–538, Aug. 2022, doi: https://doi.org/10.1002/sam.11583.

Q. H. Nguyen et al., “Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil,” Math. Probl. Eng., vol. 2021, no. 1, p. 4832864, Jan. 2021, doi: https://doi.org/10.1155/2021/4832864.

T. Verdonck, B. Baesens, M. Óskarsdóttir, and S. vanden Broucke, “Special issue on feature engineering editorial,” Mach. Learn., vol. 113, no. 7, pp. 3917–3928, 2021, doi: 10.1007/s10994-021-06042-2.

A. Khoirunnisa and N. G. Ramadhan, “Improving malaria prediction with random forest and robust scaler: An integrated approach for enhanced accuracy,” J. INFOTEL, vol. 15, no. 4, pp. 326–334, 2023, doi: 10.20895/infotel.v15i4.1056.

M. V. Anand, B. KiranBala, S. R. Srividhya, K. C., M. Younus, and M. H. Rahman, “Gaussian Naïve Bayes Algorithm: A Reliable Technique Involved in the Assortment of the Segregation in Cancer,” Mob. Inf. Syst., no. 1, p. 2436946, Jan. 2022, doi: https://doi.org/10.1155/2022/2436946.

R. F. Nasution, M. H. Dar, and F. A. Nasution, “Implementation of the Naïve Bayes Method to Determine Student Interest in Gaming Laptops,” Sinkron, vol. 8, no. 3, pp. 1709–1723, 2023, doi: 10.33395/sinkron.v8i3.12562.

Samsir, Kusmanto, A. H. Dalimunthe, R. Aditiya, and R. Wathrianthos, “Implementation Naïve Bayes Classification for Sentiment Analysis on Internet Movie Database,” Build. Informatics, Technol. Sci., vol. 4, no. 1, pp. 1–6, 2022, doi: 10.47065/bits.v4i1.1468.

F. F. Hasibuan, M. H. Dar, and G. J. Yanris, “Implementation of the Naïve Bayes Method to determine the Level of Consumer Satisfaction,” SinkrOn, vol. 8, no. 2, pp. 1000–1011, 2023, doi: 10.33395/sinkron.v8i2.12349.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementation of the Naïve Bayes Algorithm to Predict New Student Admissions

Dimensions Badge
Article History
Submitted: 2024-06-17
Published: 2024-06-30
Abstract View: 396 times
PDF Download: 184 times
How to Cite
Salsabila, A., Nasution, M., & Irmayanti, I. (2024). Implementation of the Naïve Bayes Algorithm to Predict New Student Admissions. Building of Informatics, Technology and Science (BITS), 6(1), 421-429. https://doi.org/10.47065/bits.v6i1.5363
Issue
Section
Articles