Optimization of ID3 Structure for Academic Performance Analysis using Ant Colony Algorithm


  • Dedin Fathudin * Mail Universitas Pamulang, Tangerang Selatan, Indonesia
  • Erlin Windia Ambarsari Universitas Indraprasta PGRI, Jakarta, Indonesia
  • Aulia Paramita Universitas Indraprasta PGRI, Jakarta, Indonesia
  • (*) Corresponding Author
Keywords: ID3 algorithm; Ant Colony Optimization; Academic Performance Analysis; Decision Tree; Classification Accuracy

Abstract

This study investigates the optimization of the ID3 algorithm for academic performance analysis using the Ant Colony Optimization (ACO) method. The primary research problem addressed is the inefficiency and overfitting of traditional ID3 in complex and noisy datasets. Therefore, the ACO method is integrated to enhance the ID3 structure, improving classification accuracy and computational efficiency. The research objectives include developing a decision tree model based on assignment, mid-term, and final exam scores for student performance evaluation. The method combines ID3's decision-making capabilities with ACO's optimization process, which uses pheromone trails to find optimal paths in constructing the decision tree. Temporary results show that the ACO-ID3 model achieves an accuracy of 85% with improved consistency and lower variability compared to the traditional ID3 model, which has an accuracy of 89% but higher variability; this indicates that while traditional ID3 may slightly outperform in accuracy, the ACO-ID3 model provides more stable and reliable performance across different data subsets. The study concludes that ACO-ID3 is a practical and effective tool for academic performance analysis, particularly in cases requiring consistent and reliable classification

Downloads

Download data is not yet available.

References

M. F. Rahman and F. Fadilah, “Klasifikasi Penerima Program Bantuan Beras Miskin Menggunakan Algoritma Iterative Dichotomiser 3,” Progresif: Jurnal Ilmiah Komputer, vol. 18, no. 1, p. 101, Feb. 2022, doi: 10.35889/progresif.v18i1.797.

P. Chuenprasertsuk and K. Jearanaitanakij, “Improving the ID3 Algorithm By Filtering Out Attributes With Values Of 0 or 1,” in 2022 6th International Conference on Information Technology (InCIT), 2022, pp. 173–176. doi: 10.1109/InCIT56086.2022.10067614.

I. Rasyid Munthe, S. Sarkum, and V. Sihombing, “Analysis Iterative algorithms Dichotomizer (ID3): The Satisfaction Study in Computer Laboratory,” in Proceedings of the Joint Workshop KO2PI and The 1st International Conference on Advance & Scientific Innovation, EAI, 2018. doi: 10.4108/eai.23-4-2018.2277581.

I. Ida and M. Faisal, “Iterative Dichotomiser Three (ID3) Algorithm For Classification Community of Productive and Non-Productive,” JURNAL TEKNIK INFORMATIKA, vol. 16, no. 1, pp. 80–88, May 2023, doi: 10.15408/jti.v16i1.28938.

A. Gusti and S. Hadianti, “Application of the C4.5 Algorithm to Predict the Effectiveness of Google Adwords Ads,” SISTEMASI, vol. 12, no. 1, p. 21, Jan. 2023, doi: 10.32520/stmsi.v12i1.1978.

P. Chen, “Application of an Improved C4.5 Algorithm in Shopping Websites,” in 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), IEEE, Jun. 2021, pp. 63–66. doi: 10.1109/ICAICA52286.2021.9498086.

C. Deng and Z. Ma, “Research on C4.5 Algorithm Optimization For User Churn,” in 2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE), IEEE, Aug. 2021, pp. 75–79. doi: 10.1109/CSAIEE54046.2021.9543367.

Y. Zheng, “Application of C4.5 algorithm in customer group classification of business websites,” in Fifth International Conference on Computer Information Science and Artificial Intelligence (CISAI 2022), Y. Zhong, Ed., SPIE, Mar. 2023, p. 216. doi: 10.1117/12.2669803.

W. Wiguna and D. Riana, “Diagnosis of Coronavirus Disease 2019 (Covid-19) Surveillance Using C4.5 Algorithm,” Jurnal Pilar Nusa Mandiri, vol. 16, no. 1, pp. 71–80, Mar. 2020, doi: 10.33480/pilar.v16i1.1293.

R. Tang and X. Zhang, “CART Decision Tree Combined with Boruta Feature Selection for Medical Data Classification,” in 2020 5th IEEE International Conference on Big Data Analytics (ICBDA), 2020, pp. 80–84. doi: 10.1109/ICBDA49040.2020.9101199.

M. Ozcan and S. Peker, “A classification and regression tree algorithm for heart disease modeling and prediction,” Healthcare Analytics, vol. 3, p. 100130, Nov. 2023, doi: 10.1016/j.health.2022.100130.

L. Villalobos-Arias, C. Quesada-López, A. Martínez, and M. Jenkins, “Hyper-Parameter Tuning of Classification and Regression Trees for Software Effort Estimation,” in Trends and Applications in Information Systems and Technologies, Á. Rocha, H. Adeli, G. Dzemyda, F. Moreira, and A. M. Ramalho Correia, Eds., Cham: Springer International Publishing, 2021, pp. 589–598.

S. M. Teki, B. Banothu, and M. K. Varma, “An Un-realized Algorithm for Effective Privacy Preservation Using Classification and Regression Trees,” Revue d’Intelligence Artificielle, vol. 33, no. 4, pp. 313–319, Oct. 2019, doi: 10.18280/ria.330408.

T. Daniya, M. Geetha, and K. Suresh Kumar, “Classification And Regression Trees With Gini Index,” Advances in Mathematics: Scientific Journal, vol. 9, no. 10, pp. 8237–8247, Sep. 2020, doi: 10.37418/amsj.9.10.53.

L. Ju, L. Huang, and S.-B. Tsai, “Online Data Migration Model and ID3 Algorithm in Sports Competition Action Data Mining Application,” Wirel Commun Mob Comput, vol. 2021, pp. 1–11, Jul. 2021, doi: 10.1155/2021/7443676.

M. O. Okwu and L. K. Tartibu, “Ant Colony Algorithm,” in Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications, M. O. Okwu and L. K. Tartibu, Eds., Cham: Springer International Publishing, 2021, pp. 33–41. doi: 10.1007/978-3-030-61111-8_4.

S. Fidanova, “Ant Colony Optimization,” in Ant Colony Optimization and Applications, S. Fidanova, Ed., Cham: Springer International Publishing, 2021, pp. 3–8. doi: 10.1007/978-3-030-67380-2_2.

F. Zhang, “Ant Colony Algorithm for Distributed Constrained Optimization,” in 2023 2nd International Conference for Innovation in Technology (INOCON), 2023, pp. 1–5. doi: 10.1109/INOCON57975.2023.10101321.

S. Biswas, S. A. Nusrat, and N. Tasnim, “Grid-Based Pathfinding Using Ant Colony Optimization Algorithm,” in Proceedings of Third International Conference on Advances in Computer Engineering and Communication Systems, A. B. Reddy, S. Nagini, V. E. Balas, and K. S. Raju, Eds., Singapore: Springer Nature Singapore, 2023, pp. 259–269.

F. Zhang, “Application of ant colony algorithm in distributed artificial intelligence,” in 2022 International Conference on Artificial Intelligence of Things and Crowdsensing (AIoTCs), 2022, pp. 76–80. doi: 10.1109/AIoTCs58181.2022.00107.

C.-W. Tsai and M.-C. Chiang, “Ant colony optimization,” in Handbook of Metaheuristic Algorithms, Elsevier, 2023, pp. 139–161. doi: 10.1016/B978-0-44-319108-4.00021-6.

R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “An Ant Colony Algorithm for Classification Rule Discovery,” in Data Mining, IGI Global, 2020. doi: 10.4018/9781930708259.ch010.

A. K. Nugroho, I. Permadi, Y. I. Kurniawan, A. Hanifa, and Nofiyati, “Decision tree using ant colony for classification of health data,” in AIP Conference Proceedings, 2023, p. 020002. doi: 10.1063/5.0128787.

B. Yan and S. Danning, “Teaching Quality Evaluation and Software Implementation Based on ID3 Decision Tree Algorithm,” in 2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE), 2022, pp. 337–341. doi: 10.1109/ISAIEE57420.2022.00076.

N. Selvia, E. W. Ambarsari, and N. Dwitiyanti, “Korelasi Gejala Penyakit Flu Pada Anak Balita Dengan Menggunakan Algoritma Semut,” JITEK, vol. 2, no. 2, pp. 167–174, 2022.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Optimization of ID3 Structure for Academic Performance Analysis using Ant Colony Algorithm

Dimensions Badge
Article History
Submitted: 2024-06-16
Published: 2024-06-26
Abstract View: 381 times
PDF Download: 212 times
How to Cite
Fathudin, D., Ambarsari, E. W., & Paramita, A. (2024). Optimization of ID3 Structure for Academic Performance Analysis using Ant Colony Algorithm. Building of Informatics, Technology and Science (BITS), 6(1), 198−206. https://doi.org/10.47065/bits.v6i1.5353
Issue
Section
Articles