Sistem Deteksi Kecanduan Pornografi Berbasis Chatbot Menggunakan Pornography Addiction Screening Tool (PAST)


  • Raditya Muhammad * Mail Universitas Pendidikan Indonesia, Bandung, Indonesia
  • Mochamad Iqbal Ardimansyah Universitas Pendidikan Indonesia, Bandung, Indonesia
  • (*) Corresponding Author
Keywords: Addiction; Chatbot; Mental; Pornography; Sexuality

Abstract

The use of the internet not only brings benefits but also harms the ease of access to pornographic content. Pornographic content is not solely available on adult websites but is also spread on social media accessed by many children to adults. As a result, problems arise due to pornography addiction, such as rape, sexual orientation deviation, and sexual crimes against children. Uniquely, pornography addiction is hard to detect objectively compared to drug or alcohol addiction. This study aims to develop a pornography addiction detection system in the form of a chatbot-based mobile application. The choice of chatbot is because this system supports interactive automatic communication patterns and guarantees the privacy of its users. This study adopts a psychological measurement technique Pornography Addiction Screening Tool (PAST), as a benchmark in developing application logic. Meanwhile, chatbot application development uses the waterfall method which has been tested by best practices as a software development method. Tests performed are in a developer environment. The system validation mechanism uses the Black-box testing method to observe the execution of the application when it runs the functionality that was designed beforehand. In addition, the usability measurement level application is adopted from the System Usability Scale (SUS) method. From the test results, it was found that the pornography addiction detection system operates normally and can be used as a supporting medium for handling pornography addiction by psychiatrists.

Downloads

Download data is not yet available.

References

“IDC’s Global DataSphere Forecast Shows Continued Steady Growth in the Creation and Consumption of Data,” IDC: The premier global market intelligence company, May 08, 2020. https://www.idc.com/getdoc.jsp?containerId=prUS46286020 (accessed Feb. 25, 2021).

Hootsuite, “Indonesian Digital Report 2020,” Hootsuite.

“Significant Cyber Incidents.” https://www.csis.org/programs/strategic-technologies-program/significant-cyber-incidents (accessed Dec. 07, 2022).

R. de Alarcón, J. de la Iglesia, N. Casado, and A. Montejo, “Online Porn Addiction: What We Know and What We Don’t—A Systematic Review,” J. Clin. Med., vol. 8, no. 1, p. 91, Jan. 2019, doi: 10.3390/jcm8010091.

J. Peter and P. M. Valkenburg, “Adolescents and Pornography: A Review of 20 Years of Research,” J. Sex Res., vol. 53, no. 4–5, pp. 509–531, May 2016, doi: 10.1080/00224499.2016.1143441.

G. Mestre-Bach, G. R. Blycker, and M. N. Potenza, “Pornography use in the setting of the COVID-19 pandemic,” J. Behav. Addict., vol. 9, no. 2, pp. 181–183, Apr. 2020, doi: 10.1556/2006.2020.00015.

W. S. Respati and A. Luthfi, “Gambaran Kecenderungan Kecanduan Pornografi Pada Anak Sekolah Dasar Di Jakarta Barat,” vol. 15, p. 9, 2017.

I. B. Maisya and S. Masitoh, “Derajat Keterpaparan Konten Pornografi Pada Siswa SMP Dan SMA Di DKI Jakarta Dan Banten Indonesia,” J. Kesehat. Reproduksi, vol. 10, no. 2, pp. 117–126, Jan. 2020, doi: 10.22435/kespro.v10i2.2463.

N. I. M. Razi, A. W. A. Rahman, and N. Kamaruddin, “Neurophysiological Analysis of Porn Addiction to Learning Disabilities,” in 2018 International Conference on Information and Communication Technology for the Muslim World (ICT4M), Jul. 2018, pp. 272–277. doi: 10.1109/ICT4M.2018.00057.

K. Young, “Understanding Sexually Deviant Online Behavior from an Addiction Perspective,” vol. 2, no. 1, p. 10, 2008.

N. O. Irawan, P. D. Nurfadila, P. Y. Ristanti, and J. A. H. Hammad, “Blocking pornography sites on the internet private and university access,” Bull. Soc. Inform. Theory Appl., vol. 3, no. 1, Art. no. 1, May 2019, doi: 10.31763/businta.v3i1.161.

L. Jin, S. Hao, H. Wang, and C. Cotton, “Understanding the Impact of Encrypted DNS on Internet Censorship,” in Proceedings of the Web Conference 2021, New York, NY, USA, Jun. 2021, pp. 484–495. doi: 10.1145/3442381.3450084.

K. Song and Y.-S. Kim, “An Enhanced Multimodal Stacking Scheme for Online Pornographic Content Detection,” Appl. Sci., vol. 10, no. 8, Art. no. 8, Jan. 2020, doi: 10.3390/app10082943.

G. He et al., “Finding Camouflaged Needle in a Haystack? Pornographic Products Detection via Berrypicking Tree Model,” in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA, Jul. 2019, pp. 365–374. doi: 10.1145/3331184.3331197.

M. Perez et al., “Video pornography detection through deep learning techniques and motion information,” Neurocomputing, vol. 230, pp. 279–293, Mar. 2017, doi: 10.1016/j.neucom.2016.12.017.

J. N. Hook et al., “Self-Forgiveness and Hypersexual Behavior,” Sex. Addict. Compulsivity, vol. 22, no. 1, pp. 59–70, Jan. 2015, doi: 10.1080/10720162.2014.1001542.

M. H. Orzack and C. J. Ross, “Should Virtual Sex Be Treated Like Other Sex Addictions?,” Sex. Addict. Compulsivity, vol. 7, no. 1–2, pp. 113–125, Jan. 2000, doi: 10.1080/10720160008400210.

Sugiyono, Metode Penelitian kuantitatif, kualitatif dan R & D. Bandung: Alfabeta, 2014. Accessed: Dec. 09, 2022. [Online]. Available: https://opac.perpusnas.go.id/DetailOpac.aspx?id=911046

K. Petersen, C. Wohlin, and D. Baca, “The Waterfall Model in Large-Scale Development,” in Product-Focused Software Process Improvement, Berlin, Heidelberg, 2009, pp. 386–400. doi: 10.1007/978-3-642-02152-7_29.

J. B. Grubbs, J. J. Exline, K. I. Pargament, J. N. Hook, and R. D. Carlisle, “Transgression as Addiction: Religiosity and Moral Disapproval as Predictors of Perceived Addiction to Pornography,” Arch. Sex. Behav., vol. 44, no. 1, pp. 125–136, Jan. 2015, doi: 10.1007/s10508-013-0257-z.

Youth Pornography Addiction Center, “Addiction Screening Tool,” Youth Pornography Addiction Center. http://www.ypacenter.com/youth-ages-12-18 (accessed Dec. 01, 2022).

F. Patel, R. Thakore, I. Nandwani, and S. K. Bharti, “Combating Depression in Students using an Intelligent ChatBot: A Cognitive Behavioral Therapy,” in 2019 IEEE 16th India Council International Conference (INDICON), Dec. 2019, pp. 1–4. doi: 10.1109/INDICON47234.2019.9030346.

A. D. R, F. Imamah, Y. M. A. S, and A. Dores, “APLIKASI CHATBOT (MILKI BOT) YANG TERINTEGRASI DENGAN WEB CMS UNTUK CUSTOMER SERVICE PADA UKM MINSU,” J. Cendikia, vol. 16, no. 2 Oktober, pp. 100–106, Nov. 2018.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Sistem Deteksi Kecanduan Pornografi Berbasis Chatbot Menggunakan Pornography Addiction Screening Tool (PAST)

Dimensions Badge
Article History
Submitted: 2022-12-09
Published: 2022-12-30
Abstract View: 1653 times
PDF Download: 922 times
How to Cite
Muhammad, R., & Ardimansyah, M. (2022). Sistem Deteksi Kecanduan Pornografi Berbasis Chatbot Menggunakan Pornography Addiction Screening Tool (PAST). Building of Informatics, Technology and Science (BITS), 4(3), 1616−1624. https://doi.org/10.47065/bits.v4i3.2660
Issue
Section
Articles