Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Warga Penerima Bantuan Sosial


  • Pajar Pahrudin * Mail STMIK Widya Cipta Dharma, Samarinda, Indonesia
  • Kusno Harianto STMIK Widya Cipta Dharma, Samarinda, Indonesia
  • (*) Corresponding Author
Keywords: Data Mining; Social Assistance; Inhabitant; Receiver; K-Nearest Neighbor

Abstract

Social Assistance (BanSos) is a government program intended for lower-middle families. Social assistance is assistance given to the community, especially the lower middle class, which is not continuous and selective. Many types of social assistance are provided by the government with the aim of prospering and helping the community's economy. However, the problem that occurs is that there are still many people who receive social assistance that are not people who deserve to receive social assistance, while the lower middle class who should receive social assistance are neglected and do not receive the social assistance. It should be for the distributor or the kelurahan to form groups for residents who are entitled to receive social assistance. The process of grouping the recipients of social assistance can be done by processing the data of residents who have the right to receive the social assistance. The data processing can be done by using data mining. One of the algorithms that can be used to solve problems in data mining is the K-Nearest Neighbor algorithm. After carrying out the overall process with a value of K = 5, it was found that the new data from residents was declared eligible to receive social assistance

Downloads

Download data is not yet available.

References

A. Ramdani, C. D. Sofyan, F. Ramdani, M. F. A. Tama, and M. A. Rachmatsyah, “ALGORITMA KLASIFIKASI DATA MINING UNTUK MEMPREDIKSI MASYARAKAT DALAM MENERIMA BANTUAN SOSIAL,” J. Ilm. Sist. Inf., vol. 1, no. 2, pp. 39–47, 2022.

W. Lidysari, H. S. Tambunan, and H. Qurniawan, “Penerapan Data Mining Dalam Menentukan Kelayakan Penerima Bantuan Sosial Pemko Dengan Algoritma C4.5 (Kasus Kantor Kelurahan Martoba),” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 3, no. 1, pp. 53–61, 2022, doi: 10.30645/kesatria.v3i1.97.

A. Ikhwan and N. Aslami, “Implementasi Data Mining untuk Manajemen Bantuan Sosial Menggunakan Algoritma K-Means,” J. Teknol. Inf., vol. 4, no. 2, pp. 208–217, 2020, doi: 10.36294/jurti.v4i2.2103.

D. P. Utomo and S. Aripin, “Penerapan Algoritma C5 . 0 Untuk Mengetahui Pola Kepuasan Mahasiswa di Masa Pembelajaran Daring,” in Seminar Nasional Riset Dan Information Science (SENARIS), 2021, vol. 3, pp. 7–12.

F. Telaumbanua, J. M. Purba, and D. P. Utomo, “Analysis of Online Learning Understanding Patterns at Budi Darma University Using the C5 . 0 Algorithm,” vol. 5, no. 2, pp. 118–122, 2021, doi: 10.30865/ijics.v5i2.3129.

A. Naas, S. Na’iema, H. Mulyo, and A. Widiastuti, “Klasifikasi penerima bantuan program rehabilitasi rumah tidak layak huni menggunakan algoritme K-Nearest Neighbor Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm,” J. Teknol. dan Sist. Komput., vol. 10, no. 1, pp. 32–37, 2022, doi: 10.14710/jtsiskom.2022.14110.

H. Putri, A. I. Purnamasari, A. R. Dikananda, O. Nurdiawan, and S. Anwar, “Penerima Manfaat Bantuan Non Tunai Kartu Keluarga Sejahtera Menggunakan Metode NAÏVE BAYES dan KNN,” Build. Informatics, Technol. Sci., vol. 3, no. 3, pp. 331–337, 2021, doi: 10.47065/bits.v3i3.1093.

M. Faris, Y. A. Pranoto, and H. Z. Zahro, “Penentuan Penerima Bantuan Sosial Bagi Siswa Yang Terkena Dampak Covid-19 Menggunakan Metode K-Nearest Neighbor,” J. Mhs. Tek. Inform., vol. 5, no. 1, pp. 276–283, 2021.

M. S. Mustafa and I. W. Simpen, “Implementasi Algoritma K-Nearest Neighbor ( KNN ) Untuk Memprediksi Pasien Terkena Penyakit Diabetes Pada Puskesmas Manyampa Kabupaten Bulukumba,” Semin. Ilm. Sist. Inf. Dan Teknol. Inf., vol. VIII, no. 1, pp. 1–10, 2019, [Online]. Available: https://ejurnal.dipanegara.ac.id/index.php/sisiti/article/view/1 -10/68.

A. N. Kasanah, Muladi, and U. Pujianto, “Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 196–201, 2019.

S. Nurjanah, A. M. Siregar, and D. S. Kusumaningrum, “Penerapan Algoritma K – Nearest Neighbor (KNN) Untuk Klasifikasi Pencemaran Udara Di Kota Jakarta,” Sci. Student J. Information, Technol. Sci., vol. 1, no. 2, pp. 71–76, 2020, [Online]. Available: http://journal.ubpkarawang.ac.id/mahasiswa/index.php/ssj/article/view/14.

I. A. Nikmatun and I. Waspada, “Implementasi Data Mining untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,” J. SIMETRIS, vol. 10, no. 2, pp. 421–432, 2019.

D. P. Utomo and Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, pp. 437–444, 2020.

D. P. Utomo, P. Sirait, and R. Yunis, “Reduksi Atribut Pada Dataset Penyakit Jantung dan Klasifikasi Menggunakan Algoritma C5. 0,” J. Media Inform. Budidarma, vol. 4, no. 4, pp. 994–1006, 2020, doi: 10.30865/mib.v4i4.2355.

A. D. Adhi Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi: 10.35957/jatisi.v8i2.962.

N. S. H. Pratama, D. T. Afandi, M. Mulyawan, I. Iin, and N. D. Nuris, “Menurunkan Presentase Kredit Macet Nasabah Dengan Menggunakan Algoritma K-Nearest Neighbor,” Inf. Syst. Educ. Prof. J. Inf. Syst., vol. 5, no. 2, p. 131, 2021, doi: 10.51211/isbi.v5i2.1537.

S. Silvilestari, “Data Mining Menggunakan Algoritma K-Nearest Neighbor Dalam Menentukan Kredit Macet Barang Elektronik,” J. Media Inform. Budidarma, vol. 5, no. 3, p. 1063, 2021, doi: 10.30865/mib.v5i3.3100.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Warga Penerima Bantuan Sosial

Dimensions Badge
Article History
Submitted: 2022-09-18
Published: 2022-12-24
Abstract View: 1122 times
PDF Download: 1195 times
How to Cite
Pahrudin, P., & Harianto, K. (2022). Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Warga Penerima Bantuan Sosial. Building of Informatics, Technology and Science (BITS), 4(3), 1241−1245. https://doi.org/10.47065/bits.v4i3.2276
Issue
Section
Articles