Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Warga Penerima Bantuan Sosial
Abstract
Social Assistance (BanSos) is a government program intended for lower-middle families. Social assistance is assistance given to the community, especially the lower middle class, which is not continuous and selective. Many types of social assistance are provided by the government with the aim of prospering and helping the community's economy. However, the problem that occurs is that there are still many people who receive social assistance that are not people who deserve to receive social assistance, while the lower middle class who should receive social assistance are neglected and do not receive the social assistance. It should be for the distributor or the kelurahan to form groups for residents who are entitled to receive social assistance. The process of grouping the recipients of social assistance can be done by processing the data of residents who have the right to receive the social assistance. The data processing can be done by using data mining. One of the algorithms that can be used to solve problems in data mining is the K-Nearest Neighbor algorithm. After carrying out the overall process with a value of K = 5, it was found that the new data from residents was declared eligible to receive social assistance
Downloads
References
A. Ramdani, C. D. Sofyan, F. Ramdani, M. F. A. Tama, and M. A. Rachmatsyah, “ALGORITMA KLASIFIKASI DATA MINING UNTUK MEMPREDIKSI MASYARAKAT DALAM MENERIMA BANTUAN SOSIAL,” J. Ilm. Sist. Inf., vol. 1, no. 2, pp. 39–47, 2022.
W. Lidysari, H. S. Tambunan, and H. Qurniawan, “Penerapan Data Mining Dalam Menentukan Kelayakan Penerima Bantuan Sosial Pemko Dengan Algoritma C4.5 (Kasus Kantor Kelurahan Martoba),” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 3, no. 1, pp. 53–61, 2022, doi: 10.30645/kesatria.v3i1.97.
A. Ikhwan and N. Aslami, “Implementasi Data Mining untuk Manajemen Bantuan Sosial Menggunakan Algoritma K-Means,” J. Teknol. Inf., vol. 4, no. 2, pp. 208–217, 2020, doi: 10.36294/jurti.v4i2.2103.
D. P. Utomo and S. Aripin, “Penerapan Algoritma C5 . 0 Untuk Mengetahui Pola Kepuasan Mahasiswa di Masa Pembelajaran Daring,” in Seminar Nasional Riset Dan Information Science (SENARIS), 2021, vol. 3, pp. 7–12.
F. Telaumbanua, J. M. Purba, and D. P. Utomo, “Analysis of Online Learning Understanding Patterns at Budi Darma University Using the C5 . 0 Algorithm,” vol. 5, no. 2, pp. 118–122, 2021, doi: 10.30865/ijics.v5i2.3129.
A. Naas, S. Na’iema, H. Mulyo, and A. Widiastuti, “Klasifikasi penerima bantuan program rehabilitasi rumah tidak layak huni menggunakan algoritme K-Nearest Neighbor Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm,” J. Teknol. dan Sist. Komput., vol. 10, no. 1, pp. 32–37, 2022, doi: 10.14710/jtsiskom.2022.14110.
H. Putri, A. I. Purnamasari, A. R. Dikananda, O. Nurdiawan, and S. Anwar, “Penerima Manfaat Bantuan Non Tunai Kartu Keluarga Sejahtera Menggunakan Metode NAÏVE BAYES dan KNN,” Build. Informatics, Technol. Sci., vol. 3, no. 3, pp. 331–337, 2021, doi: 10.47065/bits.v3i3.1093.
M. Faris, Y. A. Pranoto, and H. Z. Zahro, “Penentuan Penerima Bantuan Sosial Bagi Siswa Yang Terkena Dampak Covid-19 Menggunakan Metode K-Nearest Neighbor,” J. Mhs. Tek. Inform., vol. 5, no. 1, pp. 276–283, 2021.
M. S. Mustafa and I. W. Simpen, “Implementasi Algoritma K-Nearest Neighbor ( KNN ) Untuk Memprediksi Pasien Terkena Penyakit Diabetes Pada Puskesmas Manyampa Kabupaten Bulukumba,” Semin. Ilm. Sist. Inf. Dan Teknol. Inf., vol. VIII, no. 1, pp. 1–10, 2019, [Online]. Available: https://ejurnal.dipanegara.ac.id/index.php/sisiti/article/view/1 -10/68.
A. N. Kasanah, Muladi, and U. Pujianto, “Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 196–201, 2019.
S. Nurjanah, A. M. Siregar, and D. S. Kusumaningrum, “Penerapan Algoritma K – Nearest Neighbor (KNN) Untuk Klasifikasi Pencemaran Udara Di Kota Jakarta,” Sci. Student J. Information, Technol. Sci., vol. 1, no. 2, pp. 71–76, 2020, [Online]. Available: http://journal.ubpkarawang.ac.id/mahasiswa/index.php/ssj/article/view/14.
I. A. Nikmatun and I. Waspada, “Implementasi Data Mining untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,” J. SIMETRIS, vol. 10, no. 2, pp. 421–432, 2019.
D. P. Utomo and Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, pp. 437–444, 2020.
D. P. Utomo, P. Sirait, and R. Yunis, “Reduksi Atribut Pada Dataset Penyakit Jantung dan Klasifikasi Menggunakan Algoritma C5. 0,” J. Media Inform. Budidarma, vol. 4, no. 4, pp. 994–1006, 2020, doi: 10.30865/mib.v4i4.2355.
A. D. Adhi Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi: 10.35957/jatisi.v8i2.962.
N. S. H. Pratama, D. T. Afandi, M. Mulyawan, I. Iin, and N. D. Nuris, “Menurunkan Presentase Kredit Macet Nasabah Dengan Menggunakan Algoritma K-Nearest Neighbor,” Inf. Syst. Educ. Prof. J. Inf. Syst., vol. 5, no. 2, p. 131, 2021, doi: 10.51211/isbi.v5i2.1537.
S. Silvilestari, “Data Mining Menggunakan Algoritma K-Nearest Neighbor Dalam Menentukan Kredit Macet Barang Elektronik,” J. Media Inform. Budidarma, vol. 5, no. 3, p. 1063, 2021, doi: 10.30865/mib.v5i3.3100.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Warga Penerima Bantuan Sosial
Pages: 1241−1245
Copyright (c) 2022 Pajar Pahrudin, Kusno Harianto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















