Sistem Klasifikasi Pengaduan Masyarakat Pada BPJS Ketenagakerjaan Menggunakan Algoritma Naïve Bayes Berbasis Mobile


  • Fika Ayu Lestari * Mail STMIK Amik Riau, Pekanbaru, Indonesia
  • Lusiana Efrizoni STMIK Amik Riau, Pekanbaru, Indonesia
  • Edwar Ali STMIK Amik Riau, Pekanbaru, Indonesia
  • Rahmiati Rahmiati STMIK Amik Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Classification; BPJS Employment; Naive Bayes Algorithm; Public Complaints; Mobile

Abstract

Public complaints are needed so that the performance of an agency can be known whether it is running well or vice versa. Improving the quality of public services can be done through the quick resolution of complaints from service providers. Naive Bayes Classifier is an approach that refers to Bayes theorem by combining previous knowledge with new knowledge. So it is called a classification algorithm that is simple but has high accuracy. For this reason, this study will prove the ability of Naive Bayes to classify public complaints against BPJS Employment which contain information on services or social conditions in Pekanbaru City. There are 3 types of complaint classification that can be submitted, namely disbursement problems, BPJS Employment service problems and problems with social security administration. The mobile-based system is implemented with the programming language used, namely Java, while PHP is for administrators. Administrators in this system are employees who work in the BPJS Employment office. This system is tested using whitebox testing for unit testing and integration testing, blackbox testing for validation testing and usability testing. The results of this study are the classification system for public complaints at BPJS Employment using the mobile-based Naive Bayes algorithm. The classification accuracy using the Naïve Bayes algorithm is 0.9, the average precision is 0.93, the recall is 0.91, and the F1-score is 0.9.

Downloads

Download data is not yet available.

References

A. Fitriano, D. Fakultas, and E. Unpri, “Cabang Tanjung Morawa,” vol. 6, no. 1, 2017.

K. K. Surakarta, “No Title,” no. April 2017, pp. 978–979.

H. Mulachela, “Call Center BPJS Ketenagakerjaan, Pilihan Praktis Saat Ada Masalah - Lifestyle Katadata.co.id,” 2021. https://katadata.co.id/redaksi/berita/6136f6f55dd07/call-center-bpjs-ketenagakerjaan-pilihan-praktis-saat-ada-masalah (accessed Nov. 08, 2021).

E. Manalu, F. A. Sianturi, and M. R. Manalu, “Penerapan Algoritma Naive Bayes Untuk Memprediksi Jumlah Produksi Barang Berdasarkan Data Persediaan dan Jumlah Pemesanan Pada CV. Papadan Mama Pastries,” J. Mantik Penusa, vol. 1, no. 2, pp. 16–21, 2017, [Online]. Available: https://ezp.lib.unimelb.edu.au/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=ffh&AN=2008-10-Aa4022&site=eds-live&scope=site.

A. Nafalski and A. P. Wibawa, “Machine translation with javanese speech levels’ classification,” Inform. Autom. Pomiary w Gospod. i Ochr. Środowiska, 2016.

S. Sumpeno, “Klasifikasi Emosi Untuk Teks Bahasa Indonesia Menggunakan Metode Naive Bayes Klasifikasi Emosi Untuk Teks Bahasa Indonesia Menggunakan Metode Naive Bayes,” no. July, 2015.

R. N. Devita, H. W. Herwanto, and A. P. Wibawa, “Perbandingan Kinerja Metode Naive Bayes dan K-Nearest Neighbor untuk Klasifikasi Artikel Berbahasa indonesia,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, p. 427, 2018, doi: 10.25126/jtiik.201854773.

B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” J. Edukasi dan Penelit. Inform., vol. 4, no. 2, p. 113, 2018, doi: 10.26418/jp.v4i2.27526.

F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” INOVTEK Polbeng - Seri Inform., vol. 3, no. 1, p. 50, 2018, doi: 10.35314/isi.v3i1.335.

P. S. M. Suryani, L. Linawati, and K. O. Saputra, “Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia,” Maj. Ilm. Teknol. Elektro, vol. 18, no. 1, p. 145, 2019, doi: 10.24843/mite.2019.v18i01.p22.

I. Setiawan and D. Nursantika, “Klasifikasi Artikel Berita Menggunakan Metode Text Mining Dan Naive Bayes Classifier,” Pros. SENIATI, pp. 1–6, 2017, [Online]. Available: http://ejournal.itn.ac.id/index.php/seniati/article/view/790.

D. Ariyanti and K. Iswardani, “Teks Mining untuk Klasifikasi Keluhan Masyarakat Pada Pemkot Probolinggo Menggunakan Algoritma Naïve Bayes,” J. IKRA-ITH Inform., vol. 4, no. 3, pp. 125–132, 2020.

L. Syafira and B. Rikumahu, “ANALISIS KORELASI SENTIMEN PADA TWITTERTERHADAP ABNORMAL RETURNSAHAM(STUDI KASUS PADA SAHAM INDEKS LQ45 DI TWITTER),” J. Mitra Manaj., vol. 4, no. 11, pp. 1322–1335, 2020, [Online]. Available: http://e-jurnalmitramanajemen.com/index.php/jmm/article/view/125/69.

C. Anam, Indriati, and Marji, “Klasifikasi Pengaduan Pelayanan Dispendukcapil Kota Malang Menggunakan Metode Naïve Bayes dan Seleksi Fitur Glasgow-II,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 9, pp. 3264–3271, 2020.

E. P. Nuansa, “Analsis Sentimen Pengguna Twitter Terhadap Pemilihan Gubernur Dki Jakarta Dengan Metode Naïve Bayesian Classification Dan Support Vector Machine,” 2017.

F. J. Kaunang, “Analisis dan Perancangan Sistem Informasi Fasilitas Sekolah,” vol. 7, no. 2, pp. 124–130.

A. Budiman, L. S. Wahyuni, and S. Bantun, “RUMAH KOS BERBASIS WEB ( STUDI KASUS : KOTA BANDAR LAMPUNG ),” vol. 13, no. 2, pp. 24–30, 2019.

W. Aprianti and U. Maliha, “Sistem Informasi Kepadatan Penduduk Kelurahan Atau Desa Studi Kasus Pada Kecamatan Bati-Bati,” vol. 2, no. 2013, pp. 21–28, 2016.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Sistem Klasifikasi Pengaduan Masyarakat Pada BPJS Ketenagakerjaan Menggunakan Algoritma Naïve Bayes Berbasis Mobile

Dimensions Badge
Article History
Submitted: 2022-06-15
Published: 2022-06-30
Abstract View: 57 times
PDF Download: 41 times
How to Cite
Lestari, F., Efrizoni, L., Ali, E., & Rahmiati, R. (2022). Sistem Klasifikasi Pengaduan Masyarakat Pada BPJS Ketenagakerjaan Menggunakan Algoritma Naïve Bayes Berbasis Mobile. Building of Informatics, Technology and Science (BITS), 4(1), 217−225. https://doi.org/10.47065/bits.v4i1.1685
Issue
Section
Articles