Penerapan Metode Decision Tree Dalam Menentukan Kelulusan Mahasiswa


  • Fitria Rahmadayanti * Mail Sekolah Tinggi Teknologi Pagaralam, Pagar Alam, Indonesia
  • Inda Anggraini Sekolah Tinggi Teknologi Pagaralam, Pagar Alam, Indonesia
  • (*) Corresponding Author
Keywords: Prediction System; Student Graduation; Decision Tree; RAD

Abstract

The purpose of this study is to produce a prediction system for determining the determination of student graduation on time with the Decision Tree method at Pagaralam High School of Technology. If many students graduate not on time or exceed the specified limit will result in the accumulation of students in large numbers due to the imbalance of the number of students entering and exiting each graduation period so that it can cause the academic process does not run optimally. Decision Tree is a classification algorithm that can predict large amounts of data. The development method used is the Rapid Application Develoment (RAD) method consisting of Requirement Planning (Requirements Planning), Workshop Design, Implementation (Implementation). This research can help the Pagaralam High School of Technology in seeing whether students will graduate on time or not

Downloads

Download data is not yet available.

References

R. Rosnelly et al., “ANALISIS METODE DECISION TREE DALAM,” pp. 131–140.

M. Ridwan, “Sistem Rekomendasi Proses Kelulusan Mahasiswaberbasis Algoritma Klasifikasi C4.5,” J. Ilm. Inform., vol. 2, no. 1, pp. 105–111, 2017, doi: 10.35316/jimi.v2i1.460.

R. H. Kusumodestoni and S. Sarwido, “Komparasi Model Support Vector Machines (Svm) Dan Neural Network Untuk Mengetahui Tingkat Akurasi Prediksi Tertinggi Harga Saham,” J. Inform. Upgris, vol. 3, no. 1, 2017, doi: 10.26877/jiu.v3i1.1536.

N. Y. Septian, “Data Mining Menggunakan Algoritma Naïve Bayes Untuk Klasifikasi Kelulusan Mahasiswa Universitas Dian Nuswantoro,” J. Semant. 2013, pp. 1–11, 2009.

J. Fadlil and W. F. Mahmudy, “Pembuatan Sistem Rekomendasi Menggunakan Decision Tree dan Clustering,” Kursor, vol. 3, No.1, no. 1, pp. 1–10, 2007.

endang supriyadi, “Metode SVM Berbasis PSO untuk Meningkatkan Prediksi Ketepatan Waktu Kelulusan Mahasiswa,” J. Sist. Inf., vol. 6, no. 2, p. 335171, 2017, doi: 10.31227/osf.io/4pyrt.

F. Dwi Meliani Achmad, Budanis, Slamat, “Klasifikasi Data Karyawan Untuk Menentukan Jadwal Kerja Menggunakan Metode Decision Tree,” J. IPTEK, vol. 16, no. 1, pp. 18–23, 2012, [Online]. Available: http://jurnal.itats.ac.id/wp-content/uploads/2013/06/3.-BUDANIS-FINAL-hal-17-23.pdf.

R. T. Wulandari, “Pengertian Data Mining,” Data Min., vol. 7, no. 3, pp. 3–9, 2010.

K. Pustaka, “Penerapan Algoritma Decision Tree Id3 Untuk Prediksi Kelulusan Mahasiswa Jenjang Pendidikan D3 Di Fakultas Teknik Universitas Pandanaran,” Neo Tek., vol. 5, no. 2, pp. 2–6, 2019, doi: 10.37760/neoteknika.v5i2.1391.

A. Romadhona, Suprapedi, and H. Himawan, “Prediksi Kelulusan Mahasiswa Tepat Waktu Berdasarkan Usia, Jenis Kelamin, Dan Indeks Prestasi Menggunakan Algoritma Decision Tree,” J. Teknol. Inf., vol. 13, pp. 69–83, 2017.

I. P. Astuti, “Prediksi Ketepatan Waktu Kelulusan Dengan Algoritma Data Mining C4.5,” Fountain Informatics J., vol. 2, no. 2, p. 5, 2017, doi: 10.21111/fij.v2i2.1067.

A. Rohman and A. Rufiyanto, “Komparasi Model Decision Tree Untuk Prediksi Kelulusan Mahasiswa Di Universitas Pandanaran,” Neo Tek., vol. 6, no. 1, pp. 8–12, 2020, doi: 10.37760/neoteknika.v6i1.1427.

M. A. R. Sikumbang, R. Habibi, and S. F. Pane, “Sistem Informasi Absensi Pegawai Menggunakan Metode RAD dan Metode LBS Pada Koordinat Absensi,” J. Media Inform. Budidarma, vol. 4, no. 1, p. 59, 2020, doi: 10.30865/mib.v4i1.1445.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Metode Decision Tree Dalam Menentukan Kelulusan Mahasiswa

Dimensions Badge
Article History
Submitted: 2021-12-22
Published: 2021-12-31
Abstract View: 85 times
PDF Download: 92 times
How to Cite
Rahmadayanti, F., & Anggraini, I. (2021). Penerapan Metode Decision Tree Dalam Menentukan Kelulusan Mahasiswa. Building of Informatics, Technology and Science (BITS), 3(3), 441-445. https://doi.org/10.47065/bits.v3i3.1154
Section
Articles