Penerima Manfaat Bantuan Non Tunai Kartu Keluarga Sejahtera Menggunakan Metode NAÏVE BAYES dan KNN


  • Haidah Putri STMIK IKMI Cirebon, Cirebon, Indonesia
  • Ade Irma Purnamasari STMIK IKMI Cirebon, Cirebon, Indonesia
  • Arif Rinaldi Dikananda STMIK IKMI Cirebon, Cirebon, Indonesia
  • Odi Nurdiawan * Mail STMIK IKMI Cirebon, Cirebon, Indonesia
  • Saeful Anwar STMIK IKMI Cirebon, Cirebon, Indonesia
  • (*) Corresponding Author
Keywords: Data Mining; Naïve Bayes; K-NN; Classification; KKS

Abstract

The Prosperous Family Card is one of the government's programs in accelerating poverty which functions as a marker for the underprivileged. The implementation of the PSC policy is still not optimal due to factors, namely the lack of socialization and information from village and sub-district officials to the community regarding programs issued by the government. This research to classify the beneficiaries of the Prosperous Family Card, because there are still many other disadvantaged families who have not had the opportunity to receive this assistance program. The method used in this research is the Naive Bayes method and the K-NN method. The results of this study are the classification of beneficiaries from 6,491 KKS recipients with the K-NN Algorithm method yielding an accuracy value of 66.46% with a distribution in 5 villages, including pred Argasunya class precision 64.90% pred Harjamukti class precision 65.18% pred Kalijaga class precision 66.64% pred Kecapi class precision 68.44% pred Prohibition class precision 68.34% while the Naïve Bayes algorithm is classified with true in each kelurahan with true Argasunya distribution of 1,196 KKS class precision 100%, true Harjamukti 1,339 KKS class precision 100%, true Kalijaga 2,067 KKS class precision 100%, true Kecapi 1,137 KKS class precision 100%, true Prohibition 744 KKS(1 KKS true Argasunya, 1 KKS true Harjamukti, 3 KKS true Kalijaga, 3 KKS true Kecapi) class precision 98.64%. the accurasy value of the Naïve Bayes algorithm model is 99.88%.

Downloads

Download data is not yet available.

References

G. M. V. K. Helvine Gultom, Paulus Kindangen, “Jurnal Pembanguan Ekonomi dan Keuangan Daerah Vol.20 No.04. Mei 2020,” J. Pembang. Ekon. dan Keuang. Drh., vol. 20, no. 4, pp. 39–53, 2020.

D. V. Ferezagia, “Analisis Tingkat Kemiskinan di Indonesia,” J. Sos. Hum. Terap., vol. 1, no. 1, pp. 1–6, 2018, doi: 10.7454/jsht.v1i1.6.

T. Alawiyah, T. Supriatin, H. Sutisna, A. B. Hikmah, and B. K. Simpony, “Implementasi Metode Topsis Pada Sistem Pendukung Keputusan Penerima KKS Pada Desa Tawang,” Indones. J. Softw. Eng., vol. 6, no. 2, pp. 152–162, 2020, doi: 10.31294/ijse.v6i2.8960.

A. Prajoko, R. W. Sembiring, and S. S, “Penerapan Algoritma C4.5 Dalam Klasifikasi Penerima Kartu Keluarga Sejahtera (KKS),” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 6, no. 1, p. 171, 2021, doi: 10.30645/jurasik.v6i1.281.

M. A. Suhendra, D. Ispriyanti, and S. Sudarno, “Ketepatan Klasifikasi Pemberian Kartu Keluarga Sejahtera Di Kota Semarang Menggunakan Metode Regresi Logistik Biner Dan Metode Chaid,” J. Gaussian, vol. 9, no. 1, pp. 64–74, 2020, doi: 10.14710/j.gauss.v9i1.27524.

F. Liantoni, “Klasifikasi Daun Dengan Perbaikan Fitur Citra Menggunakan Metode K-Nearest Neighbor,” J. Ultim., vol. 7, no. 2, pp. 98–104, 2016, doi: 10.31937/ti.v7i2.356.

H. Annur, “Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes,” Ilk. J. Ilm., vol. 10, no. 2, pp. 160–165, 2018, doi: 10.33096/ilkom.v10i2.303.160-165.

S. Agribisnis, T. Hias, and B. Adenium, “Jurnal Ilmu Ilmu Agribisnis : Journal of Agribusiness Science , 9 ( 2 ), Mei 2021 Jurnal Ilmu Ilmu Agribisnis : Journal of Agribusiness Science , 9 ( 2 ), Mei 2021 teknik snowball sampling yaitu pemilihan sampel dengan terlebih dahulu menetapkan satu info,” vol. 9, no. 2, pp. 191–197, 2021.

R. L. Hasanah, M. Hasan, W. E. Pangesti, F. F. Wati, and W. Gata, “Klasifikasi Penerima Dana Bantuan Desa Menggunakan Metode Knn (K-Nearest Neighbor),” J. Techno Nusa Mandiri, vol. 16, no. 1, pp. 1–6, 2019, doi: 10.33480/techno.v16i1.25.

N. Hadianto, H. B. Novitasari, and A. Rahmawati, “Klasifikasi Peminjaman Nasabah Bank Menggunakan Metode Neural Network,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 163–170, 2019, doi: 10.33480/pilar.v15i2.658.

Wiyanto, “Analisa Tingkat Kepuasan Pelanggan Terhadap Pelayanan Perusahaan Otobus XYZ Menggunakan Metode Naïve Bayes,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019.

Z. Arifin, “Penerapan Metode Knn (K-Nearest Neighbor) Dalam Sistem Pendukung Keputusan Penerimaan Kip (Kartu Indonesia Pintar) Di Desa Pandean Berbasis Web Dan Mysql,” NJCA (Nusantara J. Comput. Its Appl., vol. 4, no. 1, 2019, doi: 10.36564/njca.v4i1.101.

B. Rahmat C.T.I. et al., “Implemetasi k-means clustering pada rapidminer untuk analisis daerah rawan kecelakaan,” Semin. Nas. Ris. Kuantitatif Terap. 2017, no. April, pp. 58–60, 2017.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerima Manfaat Bantuan Non Tunai Kartu Keluarga Sejahtera Menggunakan Metode NAÏVE BAYES dan KNN

Article History
Submitted: 2021-12-20
Published: 2021-12-31
Abstract View: 2 times
PDF Download: 7 times
How to Cite
Putri, H., Purnamasari, A. I., Dikananda, A. R., Nurdiawan, O., & Anwar, S. (2021). Penerima Manfaat Bantuan Non Tunai Kartu Keluarga Sejahtera Menggunakan Metode NAÏVE BAYES dan KNN. Building of Informatics, Technology and Science (BITS), 3(3), 331-337. https://doi.org/10.47065/bits.v3i3.1093
Section
Articles

Most read articles by the same author(s)