Expert System Logika Fuzzy Penentuan Proses Penanaman Bibit Unggul Kayu Manis dengan Metode Mamdani


  • Silvilestari Silvilestari * Mail AMIK Kosgoro, Solok, Sumatera Barat, Indonesia
  • (*) Corresponding Author
Keywords: Superior Cinnamon Seedlings; Selection of Superior Seeds; Expert System; Mamdani Method

Abstract

Cinnamon is a plant that many people are interested in because cinnamon has a high selling value. Cinnamon has two advantages when it grows big, namely the bark and the wood can be marketed at a high price. Currently, many people are friends with cinnamon to support future needs. The problem of this research is the lack of information and understanding of the community in choosing cinnamon that is suitable for planting so that it thrives and has good quality. The purpose of this research is to help the community in choosing good seeds for planting. The settlement of this case uses the expert method of Mamdani, the process of solving the Mamdani method uses the OR operator. The working process of the Mamdani method is fuzification, inference engine, application of implication functions and the last is defuzification. With the decision-making system in selecting superior cinnamon seeds, it is hoped that it can help and facilitate the community in making decisions in choosing superior seeds with more accurate results. The results of this study are in the form of a prototype with the input process in the form of planting land, cinnamon seeds, the process of planting shoots, and maintaining cinnamon as output in the form of decisions, namely Very Satisfactory, Satisfactory and Unsatisfactory

Downloads

Download data is not yet available.

References

Rizki, Sestri Novia. (2018). Fuzzy logic memprediksi tingkat kecelakaan kerja pada PT.Galang Kapal di kota Batam. Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, 9(2), 151–161. https://doi.org/10.31849/digitalzone.v9i2.1980

Auditya, L., Kartiko, C., & Wiguna, C. (2020). Jurnal Edik Informatika Jurnal Edik Informatika. Penelitian Bidang Komputer Sains dan Pendidikan Informatika, 7(1), 9–18.

Jarti, N., & Lestari Putri, W. (2020). Penerapan Fuzzy Inference System Pemilihan Desain Interior. JURTEKSI (Jurnal Teknologi dan Sistem Informasi), 7(1), 75–82. https://doi.org/10.33330/jurteksi.v7i1.921

Pangaribowo, T. (2015). Perancangan Simulasi Kendali Valve Dengan Algoritma Logika Fuzzy Menggunakan Bahasa Visual Basic. Teknologi Elektro, 6(2), 123–135.

Jarti, N., & Lestari Putri, W. (2020). Penerapan Fuzzy Inference System Pemilihan Desain Interior. JURTEKSI (Jurnal Teknologi dan Sistem Informasi), 7(1), 75–82. https://doi.org/10.33330/jurteksi.v7i1.921

Jufriadi, J., Nurcahyo, G. W., & Sumijan, S. (2020). Logika Fuzzy dengan Metode Mamdani dalam Menentukan Tingkat Peminatan Tipe Motor Honda. Jurnal Informatika Ekonomi Bisnis, 3, 7–11. https://doi.org/10.37034/infeb.v3i1.60

Rahakbauw, D. L., Rianekuay, F. J., & Lesnussa, Y. A. (2019). Penerapan Metode Fuzzy Mamdani Untuk Memprediksi Jumlah Produksi Karet (Studi Kasus: Data Persediaan Dan Permintaan Produksi Karet Pada Ptp Nusantara Xiv (Persero) Kebun Awaya, Teluk Elpaputih, Maluku-Indonesia). Jurnal Ilmiah Matematika Dan Terapan, 16(1), 51–59. https://doi.org/10.22487/2540766x.2019.v16.i1.12764

Rizki, Sesri Novia, & Tipa, H. (2020). Implementasi Fuzzy Inference System Untuk Menentukan Tingkat Kriminalitas Di Kota Batam. Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, 10(2), 206–221. https://doi.org/10.31849/digitalzone.v10i2.3090

Ramadhan, M. R., Waluya, S. B., & Kharis, M. (2015). UNNES Journal of Mathematics. Ujm, 1(2252), 125–130.

Vindensia, D., & Utami, Y. (2018). Penerapan Fuzzy Inference System ( FIS ) Metode Mamdani dalam Pemilihan Jurusan Perguruan Tinggi. Publikasi Jurnal & Penelitian Teknik Informatika, 2(April 2018).

Laia, O., & Marpaung, P. (2021). Penerapan Logika Fuzzy Mamdani Untuk Memprediksi Stok Persediaan Barang Proyek ( Studi Kasus : Pt . Andhy Putra Medan ). JIKOMSI [Jurnal Ilmu Komputer dan Sistem Informasi], 3(3), 48–59. http://ejournal.sisfokomtek.org/index.php/jikom/article/view/89/77

Nizar, H., Shafira, A. S., Aufaresa, J., Awliya, M. A., & Athiyah, U. (2021). Perbandingan Metode Logika Fuzzy Untuk Diagnosa Penyakit Diabetes. Explore:Jurnal Sistem informasi dan telematika, 12(1), 37. https://doi.org/10.36448/jsit.v12i1.1763

Charolina, Y. (2016). Sistem Pendukung Keputusan Untuk Menentukan Pemberian Bonus Tahunan Menggunakan Metode Fuzzy Logic Tipe Mamdani. Teknologi Informasi, 12(2), 42–53.

Maryaningsih, Siswanto, & Masterjon. (2013). Metode Logika Fuzzy Tsukamoto Dalam Sistem Pengambilan Keputusan Penerimaan Beasiswa. Media Infotama, 9(1), 140–165.

Fernandez, A., & Herrera, F. (2012). Linguistic Fuzzy Rules in Data Mining : Follow-Up Mamdani Fuzzy Modeling Principle. Combining Experimentation and Theory, 103–122.

Sumiati, Sigit, H. T., & Kapuji, A. (2014). Mamdani Fuzzy Inference System Application Setting For Trafic Lights. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 3(10), 56–62.

Apriyanti, N., & Aksad, H. (2013). Penerapan Metode Fuzzy Mamdani dalam Perencanaan Produksi Roti. Jurnal PROGRESIF, 9(1), 885–898.[17]

Minarni, & Aldyanto, F. (2016). Prediksi Jumlah Produksi Roti Menggunakan Metode Logika Fuzzy. Teknologi Informasi, 4(2), 59–65.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Expert System Logika Fuzzy Penentuan Proses Penanaman Bibit Unggul Kayu Manis dengan Metode Mamdani

Article History
Submitted: 2021-12-10
Published: 2021-12-31
Abstract View: 12 times
PDF Download: 4 times
How to Cite
Silvilestari, S. (2021). Expert System Logika Fuzzy Penentuan Proses Penanaman Bibit Unggul Kayu Manis dengan Metode Mamdani. Building of Informatics, Technology and Science (BITS), 3(3), 141-147. https://doi.org/10.47065/bits.v3i3.1014
Section
Articles