Penerapan Algoritma Text Mining Dan TF-IDF Untuk Pengelompokan Topik Skripsi Pada Aplikasi Repository STMIK Budi Darma
Abstract
Thesis is a scientific work that must be written by students as a requirement for the final project of education. For students who want to write a thesis, for example, students on the STMIK Budi Darma campus are required to first find a topic for the title to be submitted. The way to find thesis topic references can be done by accessing the repository application. The title of the thesis has different topics, so it takes a grouping of thesis topics. Classification or grouping of thesis titles in the repository application is very important, because with the grouping of thesis titles it will make it easier to find thesis topic information that can be used as a reference in further research. Therefore, this study aims to create a repository application that is able to group theses. This research uses three methods, namely Text Mining, TF-IDF, and cosine similarity. The thesis abstract data will be processed by Text Mining to produce sentences that represent the thesis, then weighted using TF-IDF and find the level of similarity using cosine similarity. processed. So if the percentage is only 73%.
Downloads
References
M. Nurjannah and I. F. Astuti, “PENERAPAN ALGORITMA TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY ( TF-IDF ) UNTUK TEXT MINING,” vol. 8, no. 3, pp. 110–113, 2013.
M. A. Ariyanti, A. P. Wibawa, and U. Pujianto, “Metode term frequency - invers document frequency pada mekanisme pencarian judul skripsi,” Tekno, vol. 28, no. 2, p. 177, 2019.
R. T. Wahyuni, D. Prastiyanto, and E. Supraptono, “Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF pada Sistem Klasifikasi Dokumen Skripsi,” vol. 9, no. 1, 2017.
M. Mahdi, “Penerapan Metode Cosine Similarity dan Pembobotan TF / IDF pada Sistem Klasifikasi Sinopsis Buku di Perpustakaan Kejaksaan Negeri Jember,” pp. 31–42.
R. A. Sasmita, A. Z. Falani, F. I. Komputer, U. N. Surabaya, and T. Mining, “Pemanfaatan algoritma tf/idf pada sistem informasi ecomplaint handling,” vol. 27, no. 1, pp. 27–33, 2018.
N. Agusvina and N. Santoso, “Pengelompokan Artikel Berbahasa Indonesia Dengan Menggunakan Reduksi Fitur Information Gain Thresholding Dan K-Means,” vol. 2, no. 10, pp. 3822–3828, 2018.
L. M. Bening Herwijayanti1, Dian Eka Ratnawati2, “Klasifikasi Berita Online dengan menggunakan Pembobotan TF-IDFdan Cosine Similarity,” p. 308, 2018.
C. S. Sitti Munifah, Abdul Syukur, “PENGELOMPOKAN ARSIP UNIVERSITAS MENGGUNAKAN ALGORITMA K-MEANS DENGAN FEATURE SELECTION CHI SQUARE,” J. Teknol. Inf., vol. 11, pp. 160–171, 2015.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma Text Mining Dan TF-IDF Untuk Pengelompokan Topik Skripsi Pada Aplikasi Repository STMIK Budi Darma
Pages: 414-432
Copyright (c) 2021 Herlina Sari, Guidio Leonarde Ginting, Taronisokhi Zebua, Mesran Mesran

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).