Penerapan Algoritma Text Mining Dan TF-IDF Untuk Pengelompokan Topik Skripsi Pada Aplikasi Repository STMIK Budi Darma


  • Herlina Sari * Mail Universitas Budi Darma, Medan, Indonesia
  • Guidio Leonarde Ginting Universitas Budi Darma, Medan, Indonesia
  • Taronisokhi Zebua Universitas Budi Darma, Medan, Indonesia
  • Mesran Mesran Universitas Budi Darma, Medan, Indonesia
  • (*) Corresponding Author
Keywords: Text Mining; TF-IDF; Cosine Similarity; Repository

Abstract

Thesis is a scientific work that must be written by students as a requirement for the final project of education. For students who want to write a thesis, for example, students on the STMIK Budi Darma campus are required to first find a topic for the title to be submitted. The way to find thesis topic references can be done by accessing the repository application. The title of the thesis has different topics, so it takes a grouping of thesis topics. Classification or grouping of thesis titles in the repository application is very important, because with the grouping of thesis titles it will make it easier to find thesis topic information that can be used as a reference in further research. Therefore, this study aims to create a repository application that is able to group theses. This research uses three methods, namely Text Mining, TF-IDF, and cosine similarity. The thesis abstract data will be processed by Text Mining to produce sentences that represent the thesis, then weighted using TF-IDF and find the level of similarity using cosine similarity. processed. So if the percentage is only 73%.

Downloads

Download data is not yet available.

References

M. Nurjannah and I. F. Astuti, “PENERAPAN ALGORITMA TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY ( TF-IDF ) UNTUK TEXT MINING,” vol. 8, no. 3, pp. 110–113, 2013.

M. A. Ariyanti, A. P. Wibawa, and U. Pujianto, “Metode term frequency - invers document frequency pada mekanisme pencarian judul skripsi,” Tekno, vol. 28, no. 2, p. 177, 2019.

R. T. Wahyuni, D. Prastiyanto, and E. Supraptono, “Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF pada Sistem Klasifikasi Dokumen Skripsi,” vol. 9, no. 1, 2017.

M. Mahdi, “Penerapan Metode Cosine Similarity dan Pembobotan TF / IDF pada Sistem Klasifikasi Sinopsis Buku di Perpustakaan Kejaksaan Negeri Jember,” pp. 31–42.

R. A. Sasmita, A. Z. Falani, F. I. Komputer, U. N. Surabaya, and T. Mining, “Pemanfaatan algoritma tf/idf pada sistem informasi ecomplaint handling,” vol. 27, no. 1, pp. 27–33, 2018.

N. Agusvina and N. Santoso, “Pengelompokan Artikel Berbahasa Indonesia Dengan Menggunakan Reduksi Fitur Information Gain Thresholding Dan K-Means,” vol. 2, no. 10, pp. 3822–3828, 2018.

L. M. Bening Herwijayanti1, Dian Eka Ratnawati2, “Klasifikasi Berita Online dengan menggunakan Pembobotan TF-IDFdan Cosine Similarity,” p. 308, 2018.

C. S. Sitti Munifah, Abdul Syukur, “PENGELOMPOKAN ARSIP UNIVERSITAS MENGGUNAKAN ALGORITMA K-MEANS DENGAN FEATURE SELECTION CHI SQUARE,” J. Teknol. Inf., vol. 11, pp. 160–171, 2015.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma Text Mining Dan TF-IDF Untuk Pengelompokan Topik Skripsi Pada Aplikasi Repository STMIK Budi Darma

Dimensions Badge
Article History
Published: 2021-12-16
Abstract View: 1097 times
PDF Download: 2395 times
Section
Articles

Most read articles by the same author(s)

1 2 3 4 5 6 > >>